SUBMITTED TO: Fairbanks International Airport 6450 Airport Way, Suite 1 Fairbanks, AK 99709

^{BY:} Shannon & Wilson 2355 Hill Road Fairbanks, AK 99709

(907) 479-0600 www.shannonwilson.com

FINAL

SUMMARY REPORT Fairbanks International Airport PlumeStop® Pilot Study FAIRBANKS, ALASKA

December 2021 Shannon & Wilson No: 102519-005 / 11406050-656

EIII SHANNON & WILSON

PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

Submitted To: Fairbanks International Airport 6450 Airport Way, Suite 1 Fairbanks, AK 99709 Attn: Elise Thomas

Subject: FINAL SUMMARY REPORT, FAIRBANKS INTERNATIONAL AIRPORT PLUMESTOP® PILOT STUDY, FAIRBANKS, ALASKA

Shannon & Wilson prepared this report to document the results of the PlumeStop® pilot study conducted at the Fairbanks International Airport (FAI) in collaboration with the FAI, Regenesis, Inc. (Regenesis) and GeoTek Alaska (GeoTek). The pilot study was funded through cost sharing with Regenesis, GeoTek, and Shannon & Wilson Inc.'s research program. FAI's portion of these services were authorized by Professional Services Agreement Number 25-19-1-013 issued by DOT&PF on December 19, 2018, via Amendment 5, NTP 4-4 dated February 25, 2019 and Amendment 24, NTP 4-4a dated May 14, 2020.

This draft report was prepared by the undersigned. We have provided copies to FAI and Regenesis. Following your and Regenesis' review, we will revise this report and submit the final version to the Alaska Department of Environmental Conservation (DEC) for their records.

We appreciate the opportunity to be of service to you on this project. If you have questions concerning this report, or we may be of further service, please contact us.

Sincerely,

SHANNON & WILSON

Marcy Nadel Geologist, Project Manager

Kristen Freiburger Associate, Statewide Project Manager

ARM:KRF:MDN:AMJ:CBD/arm

1	Intr	oduction	11
	1.1	Purpos	se and Objectives1
	1.2	Backgr	round1
		1.2.1	Site Background2
		1.2.2	CAC and PlumeStop® Background2
	1.3	Geolog	gy and Hydrology3
	1.4	Contar	ninants of Concern and Regulatory History3
		1.4.1	Summary of PFAS Regulation Changes in Alaska4
	1.5	Scope of	of Services4
2	Fiel	d Activit	ies5
	2.1	Project	Design
		2.1.1	Monitoring Well Installation
		2.1.2	Baseline Sampling
		2.1.3	Grain-Size Analysis
		2.1.4	Passive Flux Meter
	2.2	Plumes	Stop® Injection9
	2.3	Tempo	orary Well Points
		2.3.1	Groundwater Flow Direction
	2.4	Post-In	ijection Monitoring11
	2.5	Deviat	ions12
	2.6	Sample	e Custody, Storage, and Shipping12
	2.7	Investi	gation Derived Waste12
3	Ana	lytical M	13 Iethods and Results
4	Disc	cussion	
	4.1	Plume	Stop® Injection Lessons Learned14
	4.2	Mitiga	tion of PFAS at the FAI15
	4.3	Recom	mendations15
5	Refe	erences	

Exhibits

Exhibit 1-1: Applicable Regulatory Action Levels	3
Exhibit 2-1: Monitoring well installation	7
Exhibit 2-2: Settling tubes with subsurface soil collected from MW installation	8
Exhibit 2-3: PlumeStop® and water containers at the injection site	9
Exhibit 2-4: Hydraulic Gradient Monitoring Results	10
Exhibit 2-5: Groundwater samples collected on September 17, 2020.	11

Tables

Table 1:	Summary of August 2019 Baseline Monitoring Well Analytical Results
Table 2:	Summary of MW-1903-20 Results August 2019 Through June 2021

Figures

Figure 1:	Fairbanks International Airport Vicinity
Figure 2:	Monitoring Well Locations
Figure 3:	Injection Locations

Appendices

Appendix A: Subsurface Soil Conditions Appendix B: Field Forms Appendix C: Analytical Results Appendix D: Groundwater Gradient Documents Appendix E: PlumeStop® Documents Appendix F: Permits and Approval Documentation Important Information

AAC	Alaska Administrative Code
AFFF	aqueous film forming foam
ARFF	Airport Rescue and Firefighting
°C	degrees Celsius
	below ground surface
bgs CAC	colloidal activated carbon
DEC	
DO	Alaska Department of Environmental Conservation
	dissolved oxygen
DOC	dissolved organic carbon
DOT&PF	Alaska Department of Transportation and Public Facilities
DVT	design verification testing
bgs	below ground surface
EPA	U.S. Environmental Protection Agency
FAI	Fairbanks International Airport
ft	feet
GAC	granular activated carbon
gal	gallon
GeoTek	GeoTek Alaska, Inc.
IDW	investigation derived waste
lbs.	pounds
LDRC	laboratory data review checklist
LHA	lifetime health advisory
mg/L	milligrams per liter
mV	millivolts
MW	monitoring well
ng/L	nanograms per liter
PFAS	per- and polyfluoroalkyl substances
PFBS	perfluorobutanesulfonic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFM	passive flux meter
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
QA/QC	quality assurance/quality control
Regenesis	Regenesis, Inc.
RL	laboratory reporting limit

SGS	SGS North America, Inc.
TOC	total organic carbon
TTZ	target treatment zone
TWP	temporary well point
YSI	YSI multiprobe water quality meter
μS	microSiemens

1 INTRODUCTION

Shannon & Wilson, Inc. prepared this report to document the PlumeStop® pilot study conducted at the Fairbanks International Airport (FAI) in Fairbanks, Alaska (Figure 1). This study was conducted in collaboration with PlumeStop® manufacturer, Regenesis, Inc., (Regenesis), GeoTek Alaska (GeoTek), and the FAI. This summary report covers work completed in August 2019 through June 2021. The FAI is an active Alaska Department of Environmental Conservation (DEC) listed contaminated site due to the presences of perand polyfluoroalkyl substances (PFAS) in groundwater, surface water, and soil (File Number 100.38.277, Hazard ID 26816).

This report was prepared for the FAI and Regenesis in accordance with the terms and conditions of our contract with the Alaska Department of Transportation & Public Facilities (DOT&PF), relevant DEC guidance documents, and 18 Alaska Administrative Code (AAC) 75.335.

1.1 Purpose and Objectives

This purpose of the services described in this report was evaluate the effectiveness of PlumeStop®, a liquid colloidal activated charcoal (CAC) product, to mitigate the transport of PFAS in groundwater near the FAI.

Our objectives were to:

- Install a 20-foot monitoring well (MW) within the area known to be affected by PFAS (Figure 2);
- Inject PlumeStop® surrounding the screened interval of the MW (Figure 3);
- Document the dose response of PlumeStop® on multiple PFAS compounds under field conditions; and
- Monitor PFAS concentrations at the MW for a minimum of one year.

1.2 Background

Aqueous film forming foam (AFFF) products have historically been used in airport operations for suppressing airplane fires, and in fire training exercises. AFFF contain PFAS, including perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). These compounds are commonly referred to as "forever chemicals" due to their persistence, toxicity, and bioaccumulative potential. There is evidence that exposure to these compounds can lead to adverse health effects.

In Alaska, surface water bodies and residential homes with private water-supply wells are commonly located near airports. The need to protect sensitive offsite receptors has driven interest in in-situ remediation technologies. CAC is gaining traction in the environmental remediation industry as a groundwater technology that can be used to sequester PFAS and prevent its migration.

1.2.1 Site Background

The FAI terminal is located at 6450 Airport Way in Fairbanks, Alaska (Figure 1). The geographic coordinates of the primary FAI runway, 2L-20R, are latitude 64.8160, longitude -147.8612.

The FAI Aircraft Rescue and Firefighting (ARFF) program has used AFFF for training, systems testing, and emergency response at the FAI since the 1970s. In 2017, the FAI began an investigation in collaboration with DEC and Shannon & Wilson to investigate the extent of PFAS migration from the FAI. Monitoring of water-supply wells in the neighborhoods downgradient of the FAI found PFAS concentrations above applicable action levels in 107 private drinking-water wells.

PFAS regulations have evolved as continuing research offers new insights into the toxicological impacts of these compounds. A summary of the regulatory history of PFAS in Alaska is included in Section 1.4.1.

1.2.2 CAC and PlumeStop® Background

In 2018, Shannon & Wilson contacted Regenesis to collaborate on a remediation method to sequester PFAS at the FAI and document how it prevents or slows further transport of PFAS. Activated carbon has been used as an effective remediation technology to remove PFAS from groundwater in pump-and-treat systems using granular activated carbon (GAC). Regenesis' CAC product PlumeStop® is an in-situ groundwater remediate designed to filter and retain environmental contaminants out of the groundwater as it moves through the subsurface.

PlumeStop® liquid activated carbon is composed of less-than-two-micron particles of activated carbon and dispersants suspended in water. Once in the subsurface, the material binds to the aquifer matrix. Case studies conducted by Regenesis have shown PlumeStop® to be effective in reducing concentrations of PFOS and PFOA in the downgradient plume when injected at a source area (Regenesis, 2018).

1.3 Geology and Hydrology

The FAI and vicinity are at the northern edge of the Tanana Lowlands physiographic province. The Tanana Lowlands province forms a large, arcuate band of alluvial sediments between the Alaska Range and the Yukon-Tanana Uplands. The Lowlands consist of vegetated floodplains and low benches cut by the Tanana River, and sloughs and oxbow lakes at former channel positions of the Tanana or Chena Rivers. The floodplain generally slopes to the west or northwest by approximately five feet (ft.) per mile (Nelson, 1978).

Based on our experience and knowledge of hydrogeology in the Fairbanks area, the horizontal regional gradient in this area is relatively flat, typically averaging two to four ft. per mile. Depth to groundwater ranges from 5 ft. to 12 ft. below ground surface, depending on local topography. Seasonal fluctuation in groundwater levels can range from 0.2 to 9 ft. (Glass et. al., 1996).

A more detailed summary of the geology and hydrology of the FAI study area is included in our first private well summary report, dated September 28, 2018. This report includes a figure summarizing regional United States Geological Survey (USGS) groundwater contours.

1.4 Contaminants of Concern and Regulatory History

The primary contaminants of concern for the PlumeStop® site are PFOS and PFOA. However, groundwater samples were submitted for 21 (August 2019) or 25 PFAS analytes (October 2019 through March 2021), as shown in Tables 1 and 2.

The pilot study was designed to target the five PFAS compounds included in the former DEC action level for drinking water: PFOS, PFOA, perfluoroheptanoic acid (PFHpA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA). Of these contaminants, only PFOS and PFOA are regulated with numeric action levels or cleanup levels, as summarized in Exhibit 1-1 below.

Media	Compound	Level
Drinking water	PFOS + PFOA	70 ng/Lª
Groundwater	PFOS	400 ng/L⁵
Groundwater	PFOA	400 ng/L⁵

Exhibit 1-1: Applicable Regulatory Action Levels

Notes:

a Drinking-water action level reported in DEC October 2019 Technical Memorandum.

b DEC groundwater-cleanup level reported in 18 AAC 75.345, Table C.

ng/L = nanograms per liter

1.4.1 Summary of PFAS Regulation Changes in Alaska

In May 2016 the U.S. Environmental Protection Agency (EPA) published a Lifetime Health Advisory (LHA) level of 70 nanograms per liter (ng/L) for the sum of PFOS and PFOA in drinking water. The DEC Contaminated Sites Program published groundwater-cleanup levels for PFOS and PFOA in November 2016 of 400 ng/L for each compound individually. Prior to the publication of these levels, there were no state-level cleanup levels established for PFAS.

On August 20, 2018, the DEC published a Technical Memorandum describing a new state action level for PFAS in drinking water. The action level is 70 ng/L for the sum of five PFAS compounds: PFOS, PFOA, PFHpA, PFHxS, and PFNA. The Technical Memorandum includes a separate action level for perfluorobutanesulfonic acid (PFBS).

On April 9, 2019 DEC issued an update to the August 20, 2018 Technical Memorandum rescinding the previous action level to align with EPA's LHA level.

1.5 Scope of Services

The Scope of Services described below was proposed in our May 17, 2019 letter submitted to DEC. Modifications were made in coordination with the FAI and research study partners. Field activities are described in detail in Section 2.0. Deviations from our planned scope are described in Section 2.5.

The scope of services summarized in this report includes:

- Installation, development and sampling of two MWs with five-foot screens;
- Analysis of soil grain size from each screened interval;
- Deployment of one five-foot passive flux meter (PFM) per well for analysis of Darcy velocity and PFAS mass flux;
- PlumeStop® injection tests;
- Injection of PlumeStop® in a grid pattern upgradient and cross gradient from the onsite MW;
- Decommissioning of the injection points following PlumeStop® injection;
- Quarterly sampling of groundwater from the onsite MW from fall 2020 to summer 2021; and
- Evaluation of the *in-situ* PlumeStop® remediation of PFAS compounds at the FAI.

This report was prepared for the exclusive use of the FAI, Regenesis, and their representatives. This effort presents our professional judgment as to the conditions of the site. Information presented here is based on the sampling and analyses we performed. This report should not be used for other purposes without our approval or if any of the following occurs:

- Project details change, or new information becomes available, such as revised regulatory levels or the discovery of additional source areas.
- Conditions change due to natural forces or human activity at, under, or adjacent to the project site.
- Assumptions stated in this report have changed.
- If the site ownership or land use has changed.
- Regulations, laws, cleanup levels, or applicable action levels change.
- If the site's regulatory status has changed.

If any of these occur, we should be retained to review the applicability or our analyses and recommendations. This report should not be used for other purposes without Shannon & Wilson's review. If a service is not specifically indicated in this report, do not assume it was performed.

2 FIELD ACTIVITIES

This section summarizes field activities performed between July 2019 and March 2021. The following Shannon & Wilson staff participated in the field effort:

- Craig Beebe
- Cherissa Dukelow
- Audrey Freeman
- Marcy Nadel
- Brittany Blood
- Amber Masters
- Veselina Yakimova
- Adam Wyborny
- Justin Risley

These individuals are State of Alaska Qualified Environmental Professionals as defined in 18 AAC 75.333[b]. Copies of Shannon & Wilson's boring logs are included in Appendix A and field notes are included in Appendix B.

2.1 Project Design

Before PlumeStop injection could begin, Regenesis and Shannon & Wilson conducted a series of steps called Design Verification Testing (DVT). The purpose of this program was to characterize remedial conditions in the test area. DVT included detailed soil logging and grain-size analysis, groundwater sampling for target and non-target analytes, using PFMs to measure contaminant flux, and injection testing. Shannon & Wilson also provided regional groundwater velocity and gradient information for the Fairbanks vicinity to Regenesis. Upon compilation of the data, Regenesis used design models to estimate the application volumes, quantity of CAC, and anticipated longevity of treatment.

Regenesis, Shannon & Wilson and GeoTek completed the direct push injection application of CAC in the pilot test area in Winter 2019.

2.1.1 Monitoring Well Installation

Prior to drilling activities, Shannon & Wilson requested utility locates from local utility providers using the Alaska Digline. Star Electric completed utility locates on private property.

GeoTek installed two groundwater MWs in August 2019. MWs are co-located with soil boring locations, as shown on our soil boring logs (Appendix A). MW locations are shown on Figure 2. Shannon & Wilson coordinated with the property owner, the Alaska Joint Electrical Apprenticeship Training Center at 4782 Dale Road, to install the offsite MW-1904-35 on private property. GeoTek used a Geoprobe Model 8040DT drill rig to install the MWs using DT45 direct-push tooling. The drill rig advanced a solid barrel (4.5-inch outside diameter) direct-push device for collecting continuous core samples of unconsolidated material followed by a hollow stem auger.

GeoTek completed MW-1903-20 using a stickup monument and MW-1904-35 with a flush-mounted monument. Both wells were constructed using two-inch inside-diameter PVC casings. The screens are constructed with pre-pack 0.010-inch slotted screen with 20/40 sand and threaded end caps. The filter pack within the annual space at and around the screened interval is 10/20 silica sand. A bentonite chip seal followed by pea gravel, sand, or natural gravel slough fills the remaining annul space, depending on the well. *Monitoring Well Construction Details* field forms are included in Appendix B.

Onsite well MW-1903-20 was drilled to approximately 20 ft. below ground surface (bgs), screened in the target treatment zone (TTZ) from 15 to 20 ft. bgs. Offsite well MW-1904-35 was drilled to 36 ft. bgs, screened in the TTZ from 31 to 36 ft. bgs.

No sooner than 24 hours after installation, the MWs were developed using a diaphragm pump and surge block until purge water ran clear.

Development water was purged into 55-gallon steel drums to settle prior to being filtered with GAC and discharged to the ground surface. Investigation derived waste (IDW) management is described in Section 2.7.

Exhibit 2-1: Monitoring well installation.

2.1.2 Baseline Sampling

Immediately following development, we purged the MWs using a submersible whale pump until water parameters stabilized or a total of three well volumes had been purged. We measured the following parameters using a multiprobe water quality meter (YSI): pH, temperature in degrees Celsius (°C), conductivity in microSiemens (μ S), dissolved oxygen (DO) in milligrams per liter (mg/L), and redox potential in millivolts (mV). Parameters were recorded approximately once every three to five minutes until sample collection. The following values were used to indicate stability for a minimum of three consecutive readings: ±0.1 pH, ±3 percent °C, ±10 percent DO, ±3 percent conductivity, and ±10mV redox. Water clarity (visual) was also recorded. Following parameter stabilization, we collected water samples for analysis using laboratory-supplied containers.

Groundwater samples were submitted to Eurofins TestAmerica Inc. (Eurofins TestAmerica) for analysis of 21 PFAS via EPA Method 537M and to SGS North America, Inc. (SGS) for analysis of petroleum compounds, metals, total organic carbon (TOC), and dissolved organic carbon (DOC). Results of August 2019 baseline sampling are presented in Table 1.

In October 2019, Shannon & Wilson collected additional baseline groundwater samples from MW-1903-20 and MW-1904-35 for a longer list of PFAS analytes. These samples were

submitted to Eurofins TestAmerica for analysis of 25 PFAS by EPA Method 537M. These results are reported on Table 2.

Copies of the Monitoring Well Sampling Logs are included in Appendix B, Field Forms.

2.1.3 Grain-Size Analysis

In addition to continuous soil core logging, two samples of subsurface soil from each MW screened interval were analyzed by Shannon & Wilson's materials testing lab in Fairbanks.

Sample 19-01, S-4a was collected from 16.7 ft. bgs and sample S-4b was collected from 18.3 ft. bgs in MW-1903-20. The TTZ for the onsite well (MW-1903-20) is comprised of poorly graded sand with silt and gravel (SP-SM) and poorly graded sand (GP).

Sample 19-02, S-7a was collected from 32.9 ft. bgs and S-7b was collected from 34.5 ft. bgs in MW-1904-35. The TTZ for the offsite well is well-graded gravel with sand (GW) to poorly graded sand with gravel (SP).

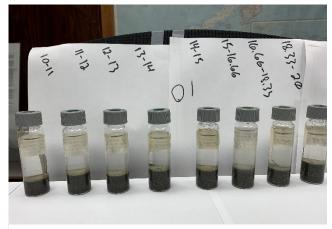


Exhibit 2-2: Settling tubes with subsurface soil collected from MW installation.

Grain size distribution charts are included in Appendix A. Shannon & Wilson's geologist used settling tubes to assist with quantifying the relative percentage of fines when describing subsurface soils (Exhibit 2-2).

2.1.4 Passive Flux Meter

On August 5, 2019 EnviroFlux[™] PFMs were installed in each MW within the screened interval. The passive flux meters were removed on August 19, 2019 and sent to the University of Florida for analysis of Darcy velocity and PFAS mass flux. In MW-1903-20 the PFM was analyzed for two vertical intervals, 16.4 to 18.1 ft. bgs and 18.4 to 20.1 ft bgs. In MW-1904-35 the PFM was analyzed for 32.0 to 34.1 ft. bgs and 34.3 to 35.9 ft bgs. Darcy velocity and mass flux tables are included with the analytical data in Appendix C.

Groundwater seepage velocity was estimated based on the division of the resulting Darcy velocity by estimated soil porosity in the TTZ (Regenesis, 2019). Seepage velocity and mass flux data were collected to allow design of accurate carbon loading rates. Regenesis used

modeling software PlumeForce[™] to determine the quantity of carbon needed to capture the PFAS species present at their respective flux rates and relative isotherm values.

2.2 PlumeStop® Injection

In October and November 2019, Regenesis and GeoTek began preparations for PlumeStop® injections. They collected groundwater elevation measurements and performed injection testing using pre-field design estimations. GeoTek advanced each injection point. CAC was injected by advancing a two-foot multi-port injection tool and injecting material in one- or two-foot intervals.

Post-injection direct push soil cores were collected by GeoTek to observe PlumeStop® staining in the length of the core. Where necessary, Regenesis increased the volume of PlumeStop® to improve dispersion in the next injection point. PFAS-free water was used to mix and dilute the PlumeStop®. Several pumps and alternative methods were attempted during the

Exhibit 2-3: PlumeStop® and water containers at the injection site.

injection effort to improve dispersion in the subsurface. Photographs are included in Appendix E.

In total, Regenesis and GeoTek injected approximately 8,470 gallons of PlumeStop at 20 injection points around MW-1903-20. Injection point locations are shown on Figure 3.

Local conditions at MW-1903-20 were significantly more transmissive than suggested by regional aquifer-wide values, pre-injection soil grain-size analysis, and the PFM results. As a result, the PlumeStop® dosing ratio and injection spacing were modified during the field effort by slowing the injection rate and changing the injection pump to match field conditions. After discussions regarding budget constraints and additional time required due to subsurface conditions, Shannon & Wilson, FAI, and Regenesis decided not to move forward with PlumeStop® injection at the offsite location.

2.3 Temporary Well Points

On October 28, 2019, GeoTek, Regenesis, and Shannon & Wilson installed two temporary well points (TWPs) near MW-1903-20. These TWP were installed to measure groundwater elevation during PlumeStop® injection. TWPs were installed upgradient of MW-1903-20 using 1-inch diameter PVC casing, with 10 ft. of slotted screen from 4 to 14 ft. bgs. TWP-1 was installed to the southeast of MW-1903-20 and TWP-2 was installed to the northeast (Figure 3). TWPs were purged using a peri-pump after installation. Purge water was filtered onsite using GAC before being discharged to the ground surface (Section 2.7).

Regenesis and Shannon & Wilson measured relative groundwater elevations in TWP-1, TWP-2, and MW-1903-20 to determine the localized hydraulic gradient and flow direction.

2.3.1 Groundwater Flow Direction

Groundwater flow direction was calculated by entering the depth to water measurements from TWP-1, TWP-2, and MW-1903-20 into the EPA-Online Hydraulic Gradient Calculator. The flow varied from a west-southwest to northwest direction from October 2019 through March 2021. A hydraulic gradient could not be calculated from measurements collected in June 2021 because the TWPs became frost jacked and a new survey of the measuring point was not performed. Calculated groundwater gradient results are shown in Exhibit 2-4 and groundwater gradient measurements are included as Appendix D. Variations in groundwater flow direction during the reporting period are within the range anticipated during project design.

Month and Year	Degrees ^a	Direction
October 2019	249	West Southwest
December 2019	273	West
March 2020	284	West
September 2020	273	West
December 2020	310	Northwest
March 2021	292	West Northwest

Exhibit 2-4: Hydraulic Gradient Monitoring Results

Notes:

a Calculated using EPA Online-Tools Hydraulic Gradient Calculator.

2.4 Post-Injection Monitoring

Due to high concentrations of PlumeStop® injectate suspended in the groundwater, Shannon & Wilson was unable to submit an analytical MW sample immediately following the PlumeStop® injections. The concentration of suspended PlumeStop® in the groundwater samples was too high for commercial laboratory analysis.

In December 2019, Shannon & Wilson collected and sent a groundwater sample from MW-1903-20 to Regenesis' California laboratory to remove entrained PlumeStop® using a centrifuge prior to submittal to Eurofins TestAmerica. The December 2019 sample was analyzed for 25 PFAS via EPA Method 537M. Groundwater samples collected in

Exhibit 2-5: Groundwater samples collected on September 17, 2020.

March 2020 and June 2020 were sent to the Regenesis laboratory for analysis of CAC concentrations. These samples were not submitted to analytical laboratories for analysis of PFAS due to sample hold-time constraints and budgetary concerns (i.e., budget was retained for samples that could be analyzed). The MW was checked monthly from February to September 2020 to determine the amount of suspended CAC.

By September 2020, the amount of PlumeStop® CAC in the groundwater had decreased to levels that would allow for analysis to commercial laboratories without pre-submittal centrifuging. Over time the CAC had settled or parked in the aquifer pore space. Quarterly samples were collected and submitted to the analytical laboratories on September 17, 2020, December 22, 2020, March 16, 2021, and June 17, 2021. Copied of our *Monitoring Well Sampling Logs* are included in Appendix B.

During sampling, Shannon & Wilson purged and sampled the MW using a submersible pump or peri-pump following the procedures described in Section 2.1.2 above. Following parameter stabilization, we collected groundwater samples using laboratory-supplied containers. Groundwater samples were submitted to Eurofins TestAmerica for analysis of 25 PFAS and to SGS for analysis of calcium, magnesium, TOC, and DOC.

2.5 Deviations

In general, we conducted our services in accordance with the approved plans and research proposals. The following are deviations from the approved plans.

- Our proposed scope of services included PFM analysis for Darcy velocity because PFAS mass flux analysis was not available when the study was outlined. The PFMs were submitted for PFAS mass flux in addition to Darcy velocity.
- Our proposed research plan indicated 12 to 17 PlumeStop® injection points and injection of 4,400 pounds (lbs.) of undiluted PlumeStop® at each MW. Due to unexpected challenges, 20 injection points were installed near MW-1903-20 and over 8,000 lbs. of diluted PlumeStop® was injected.
- Due to an increase in injections points and amount of PlumeStop® at MW-1903-20, the individual well budget was exceeded, and the remaining pilot study tasks re-evaluated. The pilot study site was reduced to only the vicinity of the onsite well, MW-1903-20.
- Initially, Shannon & Wilson had planned to monitor PFAS, metals, and carbon concentrations in the MW monthly for the first three months. Monitoring was postponed due to PlumeStop remaining in suspension and COVID-related project delays. The MW was sampled quarterly for one year beginning in September 2020, and ending 19 months after injection.

2.6 Sample Custody, Storage, and Shipping

Immediately after collection, groundwater samples were placed in individual Ziploc bags and stored in a designated sample cooler maintained between 0 °C and 6 °C with ice substitute. Shannon & Wilson maintained custody of the samples until submitting them to the laboratory for analysis.

Shannon & Wilson submitted samples for analysis of PFAS to Eurofins TestAmerica using Alaska Airlines Cargo's Goldstreak service. For shipping we packaged analytical samples and chain-of-custody forms in a hard-sided cooler with an adequate quantity of ice substitute. The samples were packaged as necessary to prevent bottle breakage, in a liner bag, and sealed with custody seals on the outside of each cooler. Samples submitted to SGS were hand delivered to the local receiving office.

2.7 Investigation Derived Waste

Purge water generated during well development and water used to decontaminate the drill augers was filtered through a GAC system. Water was collected into 55-gallon steel drums to settle priors to filtration through GAC. Following GAC treatment, the water was discharged to the ground surface. Soil drill cuttings were spread on the ground surface in the vicinity of each MW.

Shannon & Wilson's MW tubing, direct push soil liners, nitrile gloves, and other disposable investigation-derived waste were brought to the municipal landfill.

3 ANALYTICAL METHODS AND RESULTS

Shannon & Wilson submitted the analytical samples to Eurofins TestAmerica in West Sacramento, California, for determination of PFAS using EPA Method 537M. Groundwater samples were also submitted to SGS for analysis of petroleum compounds, carbon, and metals. Baseline sample results for both MWs are presented in Table 1. The analytical results for post-injection monitoring at MW-1903-20 are presented in Table 2.

Analytical laboratory reports, corresponding DEC Laboratory Data-Review Checklists (LDRCs), and our Quality Control, Quality Assurance summary (QA/QC) are included in Appendix C. The pilot study was designed to sequester PFOS, PFOA, PFHxS, PFNA, and PFHpA; however, additional PFAS detected in groundwater samples are discussed in this section. Groundwater results were compared to the drinking-water action level presented in DEC's October 2019 Technical Memorandum of 70 ng/L for the sum of PFOA and PFOS. Fully fluorinated PFAS compounds such as PFOS, PFHpS, PFHxS, and PFBS are chemically similar but vary in compound size, namely the length of the carbon-fluorine chain. The chain length is commonly referred to as 'C8' for eight carbons, 'C6' for six carbons, etc.

Prior to the injection of PlumeStop®, we collected baseline analytical groundwater samples from MW-1903-20 in August and October 2019. The highest concentrations of PFAS included PFHxS detected at 530 ng/L; PFOS detected at 280 ng/L; PFOA detected at 240 ng/L; and perfluorohexanoic acid (PFHxA) at 200 ng/L. PFBA, PFBS, PFPeA, PFHpA, PFHpS, and FOSA were also detected in baseline groundwater samples (Table 2). The detected analytes vary in chain length from C4 to C8 carbons long.

The first post-injection sample collected in December 2019 showed detectable results of PFOS below the laboratory reporting limit (RL). Other PFAS analytes were not detected in the sample collected in December 2019.

PFOS was also detected below the RL in the project sample and field duplicate collected on September 17, 2020 (Table 2). PFOA was not detected in the groundwater and field duplicate sample collected from MW-1903-20 on September 17, 2020. PFOS and PFOA were not detected in quarterly groundwater samples collected in December 2020, March 2021, or June 2021.

PFBA was detected in baseline samples and post-injection samples, except for the December 2019 sample. PFBA is C4 PFAS compound, one of the smallest PFAS compounds. PFBA concentrations ranged from 20 to 25 ng/L. Post-injection PFBA concentrations were between 80 and 88 percent of baseline.

PFBS was detected at 100 ng/L in the August 2019 baseline sample. PFBS is also a C4 PFAS compound. The analyte remained not detected until the March 2021 and June 2021 sampling events where it was detected at an estimated concentration below the RL.

PFPeA was detected at 58 ng/L in the October 2019 baseline sample. PFPeA is slightly larger at five carbons long (C5). The analyte was detected in September 2020 at 5.6 ng/L and in each subsequent sampling event at an increasing concentration. Post-injection PFPeA concentrations were approximately 10 percent of baseline concentration when detected in September 2020, and nearly 50 percent of baseline concentration in June 2021.

4 DISCUSSION

We present here our discussion relevant to the effectiveness of PlumeStop® as an *in situ* treatment option for mitigating the transportation of PFAS in groundwater near the FAI.

4.1 PlumeStop® Injection Lessons Learned

In a 2019 report summarizing the outcomes of PlumeStop® application at the FAI, Regenesis states that the pilot study has provided logistical benchmarks for future work at the FAI and other sites in Alaska. PlumeStop® injection challenges at the FAI indicate a need to apply larger volumes of CAC to achieve adequate distribution. This would require changes to the injection setup including pump size, manifold configurations, and tank capacity. GeoTek and Regenesis have begun the process of designing a system that addresses the challenges encountered during PlumeStop® application at the FAI (Regenesis, 2019). The summary report produced by Regenesis is included in Appendix E.

This pilot study was designed to target the former DEC "sum of 5" action level for one year. This means we could expect breakthrough of PFOS, PFOA, PFHxS, PFHpA, and/or PFHpA beginning with the December 2020 sample. Instead, we see partial breakthrough of the short-chain compounds PFBA (85 percent) and PFPeA (20 percent). Small carboxylic acids such as these compounds are more difficult to filter.

4.2 Mitigation of PFAS at the FAI

Initial baseline sampling of groundwater in MW-1903-20 showed PFOS and PFOA concentrations over seven times the LHA level. PFHxS and PFHpA were detected at 530 ng/L and 24 ng/L, respectively. PFNA was not detected in August 2019 baseline samples. Two months after PlumeStop® injection, groundwater samples collected from MW-1903-20 had an estimated detection of PFOS below the RL. Other PFAS analytes were not detected. As of December 2020, PFOS, PFOA, PFHpA, PFHxS, and PFNA were not detected in the post-injection samples (Table 2). These results indicate that PlumeStop® effectively treated PFOS and PFOA in groundwater at the FAI for nearly twenty months.

Out of eight other PFAS analytes that were detected in the baseline samples, three analytes had detectable results twenty months after PlumeStop® injection, including PFBA, PFBS, and PFPeA. These analytes contain fewer carbons in their chemical structure (short-chain) and are displaced from the CAC sites by larger chain PFAS analytes. GAC is known to perform poorly in sorbing short-chain PFAS compared to long-chain PFAS, such as PFOS and PFOA. The pilot study indicates that PlumeStop® is less effective at long-term treatment of short-chain PFAS. However, we note that the pilot study was not designed to target these analytes.

4.3 Recommendations

Based on the results of the pilot study and our previous work at the FAI, Shannon & Wilson recommends the DOT&PF:

- monitor PFAS, TOC, and DOC concentrations in MW-1903-20 annually to continue to evaluate the long-term effectiveness of CAC for *in situ* treatment of PFAS at the FAI;
- consider additional PlumeStop® applications near the FAI where AFFF was used, as a barrier between source areas and offsite locations where there is potential for impacts to private water supply wells and surface water bodies used for fishing or by animals;
- work with Regenesis to evaluate the potential for PlumeStop® treatment at other DOT&PF PFAS sites throughout Alaska.

5 REFERENCES

Alaska Department of Environmental Conservation (DEC), 2017, 18 AAC 75: Oil and other hazardous substances pollution control: Juneau, Alaska, July, available: http://dec.alaska.gov/commish/regulations/

Alaska Department of Environmental Conservation (DEC), 2017, Data quality objectives, checklists, quality assurance requirements for laboratory data, and sample handling: Juneau, Alaska, March.

Alaska Department of Environmental Conservation (DEC), 2017, Site characterization work plan and reporting guidance for investigation of contaminated sites: Juneau, Alaska, DEC Division of Spill Prevention and Response, Contaminated Sites Program, March, available: http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm.

Alaska Department of Environmental Conservation (DEC), 2019, Field sampling guidance: Juneau, Alaska, DEC Division of Spill Prevention and Response, Contaminated Sites Program, August, available:

http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm.

- Regenesis, 2018, Breakthrough Treatment for PFAS. Case Study: First Demonstrated In Situ Treatment Solution for PFOA/PFOS at Former Industrial Site. Prepared by Regenesis, 2018.
- Regenesis, 2019, Application Summary Report for PlumeStop Pilot Testing at the Fairbanks International Airport Site (MW-1903-20), prepared for Shannon & Wilson by Regenesis, December 5, 2019.

U.S. Environmental Protection Agency (EPA), 2016, Drinking water health advisory for perfluorooctanoic acid (PFOA), Document Number 822-R-16-005: Washington, DC, U.S. EPA Office of Water, Health and Ecological Criteria Division, May, available: https://www.epa.gov/sites/production/files/2016-05/documents/pfoa health advisory final 508.pdf

Analytical		Sample Name	MW-1903-20	MW-1904-35
Method	Analyte	Sample Date	8/2/2019	8/2/2019
	Perfluoro-octane sulfonate (PFOS)	ng/L	270	15 J
	Perfluoro-octanoic acid (PFOA)	ng/L	240	30
	Perfluoro-hexansulfonic acid (PFHxS)	ng/L	530	570
	Perfluorohexanoic acid (PFHxA)	ng/L	200	150
	Perfluoroheptanesulfonic Acid (PFHpS)	ng/L	11 J	<18
	Perfluoro-heptanoic acid (PFHpA)	ng/L	24	29
	Perluorobutane-sulfonic acid (PFBS)	ng/L	100	56
	Perfluorobutanoic acid (PFBA)	ng/L	24	23
	Perfluoropentanoic acid (PFPeA)	ng/L	55	22
EPA 537	Perfluorodecanesulfonic acid (PFDS)	ng/L	<18	<18
EPA 537 (modified)	Perfluorodecanoic acid (PFDA)	ng/L	<18	<18
(modified)	Perfluorododecanoic acid (PFDoA)	ng/L	<18	<18
	Perfluoro-nonanoic acid (PFNA)	ng/L	<18	<18
	Perfluorooctane Sulfonamide (FOSA)	ng/L	<18	<18
	Perfluorotetradecanoic acid (PFTeA)	ng/L	<18	<18
	Perfluorotridecanoic Acid (PFTriA)	ng/L	<18	<18
	Perfluoroundecanoic acid (PFUnÁ)	ng/L	<18	<18
	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ng/L	<180	<180
	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ng/L	<180	<180
	6:2 FTS	ng/L	<180	<180
	8:2 FTS	ng/L	<180	<180
AK101	Gasoline Range Organics (GRO)	mg/L	< 0.0500	< 0.0500
AK102	Diesel Range Organics (DRO)	mg/L	<0.566 B*	<0.577 B*
AK103	Residual Range Organics (RRO)	mg/L	< 0.236	0.176 J
	Benzene	µg/L	<0.200	< 0.200
	Ethylbenzene	µg/L	< 0.500	< 0.500
	o-Xylene	µg/L	< 0.500	< 0.500
SW8260C	P & M -Xylene	µg/L	<1.00	<1.00
	Toluene	µg/L	<0.500	< 0.500
	Total Xylenes	µg/L	<1.50	<1.50
	Calcium	mg/L	90.0	71.7
	Dissolved Iron	mg/L	14.5	5.36
EP200.8	Total Iron	mg/L	16.8	12.1
	Dissolved Magnesium	mg/L	22.9	17.2
	Total Magnesium	mg/L	23.0	17.7
SM 5310B	Total Organic Carbon	mg/L	4.74	4.16
SM 5310B	Dissolved Organic Carbon	mg/L	4.53	4.15

Table 1. Summary of August 2019 Baseline Monitoring Well Analytical Results

ng/L nanograms per liter

µg/L micrograms per liter

mg/L milligrams per liter

Bold Concentration exceeds Environmental Protection Agency (EPA) Lifetime Health Advisory (LHA) Level of 70 ng/L for PFOS and PFOA combined.

< Analyte not detected; listed as less than the reporting limit.

J Estimated concentration, detected greater than the method detection limit and less than the reporting limit. Flag applied by laboratory.

B* Result considered not detected due to contamination present in method control blank. Flag applied by S&W.

Table 2. Summary of MW-1903-20 Results August 2019 Through June 2021

Sample Name					MW-1903-20										
	_		Post-Injection			Post-In		Post-Injection	Post-Injection	Post-Injection					
		De	scription	Bas	eline	(Centrifuged)	Regenes	is lab only	(Water some	ewhat clear)	(Slightly clearer)	(Clearer still)	(Clearer still)		
Analyte	Chain Length	EPA LHA	Units	8/2/19	10/25/19	12/17/19	3/13/20	6/16/20	9/17	7/20	12/22/20	3/16/21	6/17/21		
Perfluorobutanoic acid (PFBA)	C4		ng/L	24	25	<1.9 B*	-	0/10/20	21	21	21	22	20		
Perfluorobutanesulfonic acid (PFBS)	C4		ng/L	100	96	<1.8		_	<1.8	<1.7	<1.8	0.29 J	0.29 J		
Perfluoropentanoic acid (PFPeA)	C5		ng/L	55	58	<1.8			5.6	4.8	12	23	27		
Perfluorohexanoic acid (PFHxA)	C6		ng/L	200	190	<1.8	_		<1.8	<1.7	<1.8	<1.8	<1.8		
Perfluorohexanesulfonic acid (PFHxS)	C6		ng/L	530	470 J*	<1.8 B*			<1.8	<1.7	<1.8	<1.8	<1.8		
Perfluoroheptanoic acid (PFHpA)	C7		ng/L	24	22	<1.8			<1.8	<1.7	<1.8	<1.8	<1.8		
Perfluoroheptanesulfonic Acid (PFHpS)	C7	_	ng/L	11 J	11	<1.8	-	_	<1.8	<1.7	<1.8	<1.8	<1.8		
Perfluorooctanoic acid (PFOA)	C8	1	ng/L	240	220	<1.8	-	-	<1.8	<1.7	<1.8	<1.8	<1.8		
Perfluorooctanesulfonic acid (PFOS)	C8	70†	ng/L	270	280	1.2 J*	-	-	0.53 J*	1.5 J*	<1.8	<1.8	<1.8		
Perfluorooctanesulfonamide (FOSA)	C8	-	ng/L	<18	0.35 J	<1.8	-	-	1.0 J	1.2 J	<1.8	<1.8	<1.8		
Perfluorononanoic acid (PFNA)	C9	-	ng/L	<18	<1.8	<1.8	_	-	<1.8	<1.7	<1.8	<1.8	<1.8		
Perfluorodecanoic acid (PFDA)	C10	-	ng/L	<18	<1.8	<1.8	-	-	<1.8	<1.7	<1.8	<1.8	<1.8		
Perfluorodecanesulfonic acid (PFDS)	C10	-	ng/L	<18	<1.8	<1.8	_	-	<1.8	<1.7	<1.8	<1.8	<1.8		
Perfluoroundecanoic acid (PFUnA)	C11	-	ng/L	<18	<1.8	<1.8	-	-	<1.8	<1.7	<1.8	<1.8	<1.8		
Perfluorododecanoic acid (PFDoA)	C12	-	ng/L	<18	<1.8	<1.8	-	-	<1.8	<1.7	<1.8	<1.8	<1.8		
Perfluorotridecanoic acid (PFTriA)	C13	-	ng/L	<18	<1.8	<1.8	-	-	<1.8	<1.7	<1.8	<1.8	<1.8		
Perfluorotetradecanoic acid (PFTeA)	C14	-	ng/L	<18	<1.8	<1.8 J*	-	-	<1.8	<1.7	<1.8	<1.8	<1.8		
6:2 FTS	-	-	ng/L	<180	<18	<18	-	-	<4.4	<4.4	<4.6	<4.4	<4.6		
8:2 FTS	-	-	ng/L	<180	<18	<18	-	-	<1.8	<1.7	<1.8	<1.8	<1.8		
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	-	-	ng/L	<180	<18	<18	-	-	<4.4	<4.4	<4.6	<4.4	<4.6		
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	-	-	ng/L	<180	<18	<18	-	-	<4.4	<4.4	<4.6	<4.4	<4.6		
9CI-PF3ONS	-	-	ng/L	-	<1.8	<1.8	-	-	<1.8	<1.7	<1.8	<1.8	<1.8		
11CI-PF3OUdS	-	-	ng/L	-	<1.8	<1.8	-	-	<1.8	<1.7	<1.8	<1.8	<1.8		
HFPO-DA (associated with GenX)	-	-	ng/L	-	<3.6	<3.6	-		<3.5	<3.5	<3.7	<3.5	<3.7		
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	-	-	ng/L	-	<1.8	<1.8	-		<1.8	<1.7	<1.8	<1.8	<1.8		
Calcium	-	-	mg/L	90.0	-	-	-	-	99.4	94.2	103	83.7 J	109		
Dissolved Iron	-	-	mg/L	14.5	-	-	-	-	-	-	-	-	-		
Total Iron	-	-	mg/L	16.8	-	-	-	-	-	-	-	-	-		
Dissolved Magnesium	-	-	mg/L	22.9	-	-	-	-	-	-	-	-	-		
Total Magnesium	-	-	mg/L	23.0	-	-	-	-	25.1	24.2	25.5	20.9	25.6		
Total Organic Carbon	-	-	mg/L	4.74	-	-	-	-	39.4	43.8	24.6	9.35	6.27		
Dissolved Organic Carbon	-	-	mg/L	-	-	-	-	-	24.6	21.4	-	3.58	3.14		
Activated Carbon	-	-	mg/L	-	-	2,532	230	167	-	-	-	-	-		

ng/L nanograms per liter, equivalent to parts per trillion

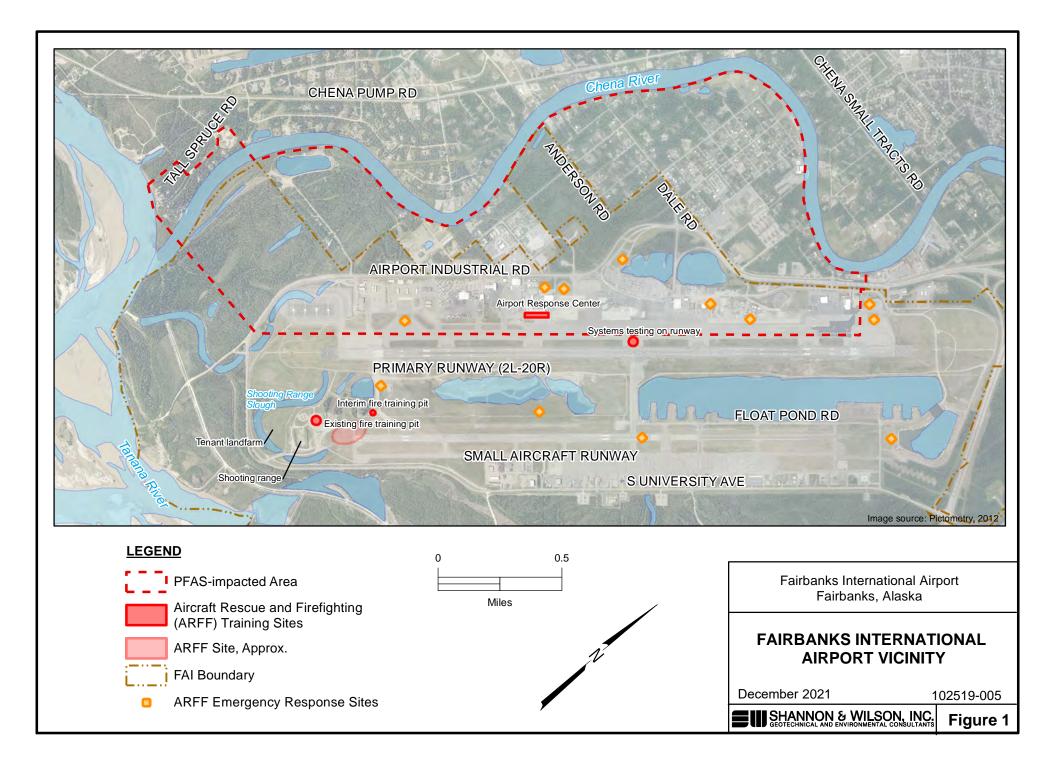
mg/L milligrams per liter, equivalent to parts per million

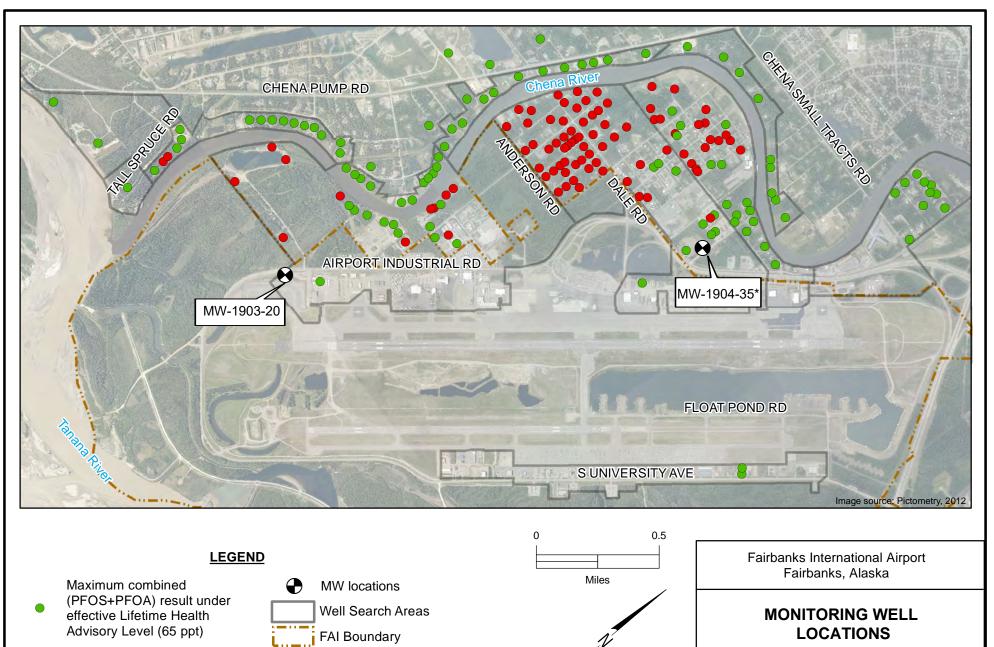
EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

- Action level not established or sample not submitted.

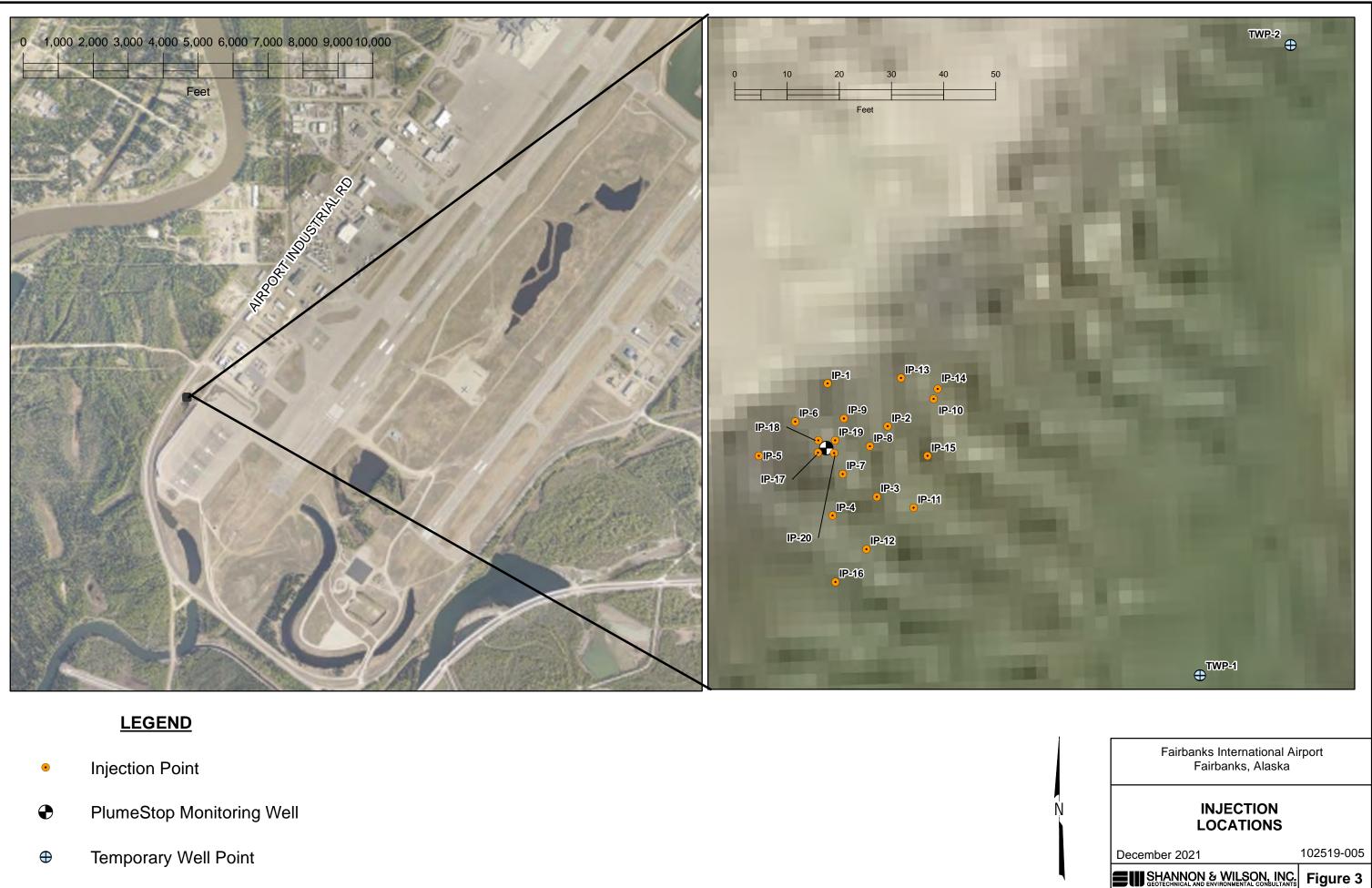

< Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.


Bold Concentration exceeds LHA level.

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

J* Result considered estimated due to a QC failure. Flag applied by Shannon & Wilson, Inc.

B* Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc.


December 2021

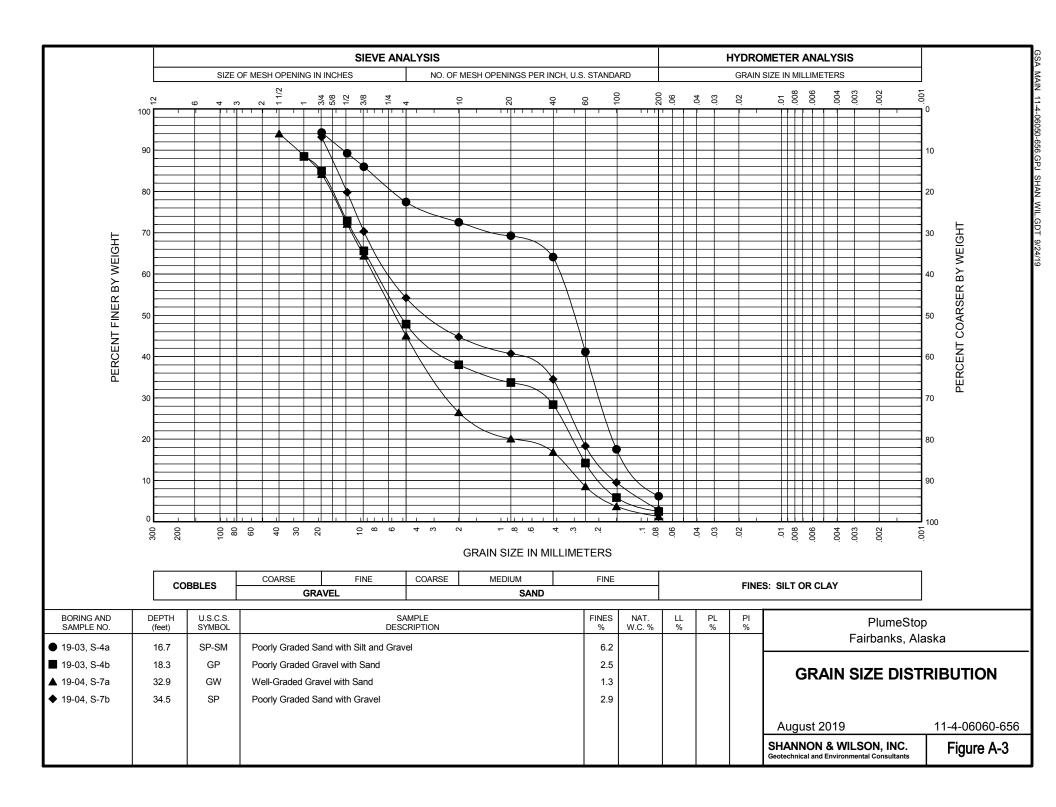
SHANNON & WILSON, INC. Figure 2

102519-005

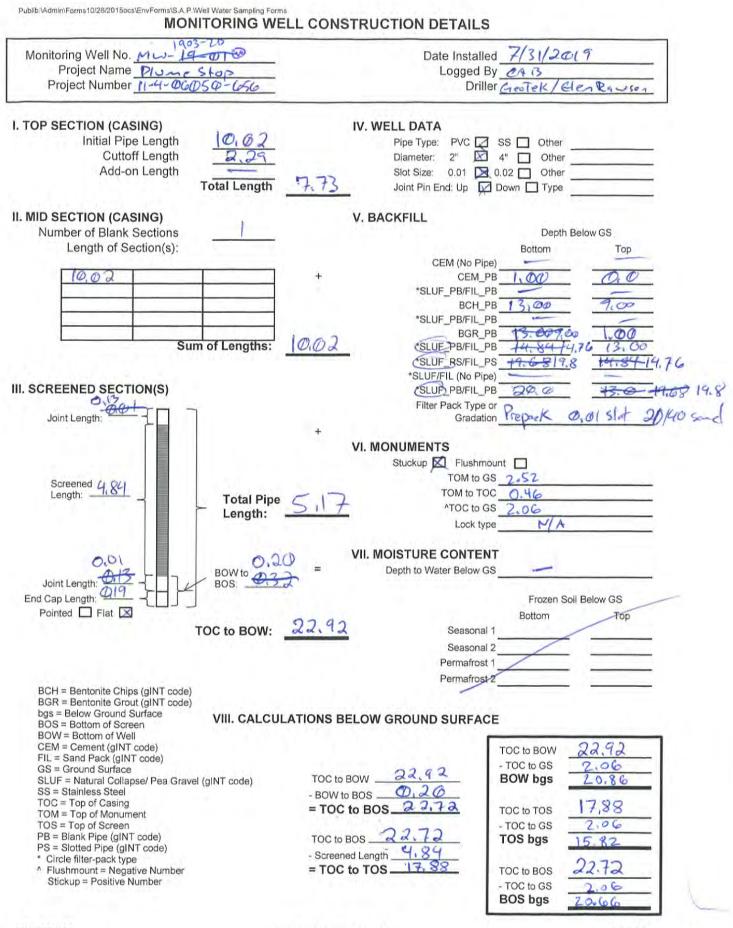
Over 65 ppt

* MW-1904-35 vicinity did not receive PlumeStop injections

Appendix A Subsurface Soil Conditions


CONTENTS

- Soil Boring Logs
- Grain Size Distribution


			LOG OF GEOF	PRO										
Date	Started	d 7/31/19	Location Fairbanks International Airport		Ground Elevation: NA									
	Compl	7/31/19			Typical Run Length 5 feet									
Tota	I Depth	(ft) 20.0	Drilling Company: GeoTek Alaska		Н	ole D	iam	Well Construction	3.75	3.75 inches				
Depth (ft)	Probe Run	and probing i approximat	Soil Description port text for a proper understanding of the subsurface mate methods. The stratification lines indicated below represent e boundaries between soil types. Actual boundaries may b ent if soil shifted inside sample tubes during extraction.	D	nple Number escription, nd Results	, Depth (ft)								
- - - - - - - - - - - - - - - - - - -	1	Stiff to very so wet; nonplast and 7.8 feet.	wn, <i>Topsoil</i> ; moist. oft, brown to gray, <i>Silt (ML)</i> ; moist to 3 feet, then c fines. 1-inch laminated organics between 7 feet y, <i>Poorly Graded Sand with Silt (SP-SM)</i> ; wet; es.	7	5.0 Depth, ft	Symbol Street Stre	PID, ppm	During Drilling						
	4	subangular to - Transitions to Very soft, gra	y, <i>Poorly Graded Sand with Gravel (SP)</i> ; wet, subrounded gravel; nonplastic fines. o coarser grained sand with depth. y, <i>Poorly Graded Gravel with Sand (GP)</i> ; wet; subrounded gravel; nonplastic fines.	1	15.0 16.8 20.0						15- - - - 20-			
			BOTTOM OF BORING COMPLETED ON 7/31/2019		20.2						-			
N CHO. 2.	NOTES 1. In some cases where recovery was low in the upper part of the run, the soil sample may have slid down in the tube prior to removal from the ground. 2. Groundwater level, if indicated above, was estimated during probing and should be considered approximate. 3. Refer to KEY for definitions and explanation of symbols.						PlumeStop Fairbanks, Alaska							
	CT = cor sample;	rrosion test sample;	TR = thermal resistivity sample; EN = environmental sample; AR = archeological sample. <u>LEGEND</u>	er	L	.00	6 0)F GI	EOPR	OBE 19	-03			
	2" Pla	stic Tube with Soi			lugu	st 20	19			11-4-060	60-656			
JE OPK	— Run N	νυ.		S G	SHAI eotech	NNO nical ar	N 8	wironmenta	SON, INC	^{;.} Fig	ure A-1			

	LOG OF GEOP																		
Date	Date Started 7/31/19 Location IBEW - Kornfeind Training Center								roun	d El	evation	N	A						
Date			7/31/19					יד	ypica	l Ru	ın Leng	th 5	5 feet						
Total Depth (ft) 35.0				Drilling Co	ompany: GeoTek A	laska		н	ole D	iam		3.	75 inch	es					
Depth (ft)	Probe Run	F	and probing me approximate b	So ort text for a pr thods. The so ooundaries be	oil Description oper understanding of tratification lines indica	f the subsurface materials ated below represent the ual boundaries may be	# 4tro0	Depui, IL	Symbol	PID, ppm	Well Construction	s	Descr	Number, iption, esults	Depth (ft)				
_	1		Very soft, bro			/	/ 0.1		İΠ						_				
 -			nonplastic fine	es.		le to trace organics;	2.9	à		7.1	**** ****								
- - 5		-	nonplastic fine	es.	brown, Silt with Se		- 5.0			9									
- - -	2		•	-	Graded Gravel with ular to subrounded	Silt and Sand gravel; nonplastic				9.1									
- 	2		fines.			SM) ; wet; nonplastic	- 8.1 - 10			10.8	During Drilling				 10				
-	3		•	-	Graded Gravel with ar to subrounded g					9.1					-				
- - - - -	3	_					— 15.	.0		10.8									
	4			subrounde	0	sand (GP) wet; ed sand between 18													
 20	4	_													20-				
	5	-								10.5					-				
										1	1 r/1 r/	4 1							
2. 2. 3.	consic	lered	er level, if indicate approximate. Y for definitions a		estimated during proton of symbols.	bing and should be						umeSi anks, /	top Alaska						
	sampl	e; GE		sample; AR = : <u>LEGE</u>		= environmental Screen and Sand Filter		L	00	G C)F GI	EOP	ROB	SE 19-0	4				
	2" F	lastic	Tube - No Soi				Au	gu	st 20	19			11	-4-06060-	656				
	– Rur	n No.					SH Geot	IAI tech	NNO nical ar	N 8		SON, I al Consulta	NC.	Figure Sheet 1 c	A-2				

				LOG OF	GEOPRO	ЭΒ	Ε						
Date S	startec	7/31/19	Location	BEW - Kornfeind Training C	enter		Grou	nd E	levatio	on:	NA		
Date C	ompl	eted 7/31/19					Туріс	al R	un Lei	ngth	5 feet		
Total D	Depth	(ft) 35.0	Drilling C	ompany: GeoTek Alaska			Hole	Dian	neter:		3.75 inch	es	
Depth (ft)	Probe Run	and probing me approximate b	S ort text for a plat thods. The s boundaries be	Dil Description roper understanding of the subsur tratification lines indicated below r tween soil types. Actual boundar inside sample tubes during extra	epresent the ies may be	Depth, ft.	Svmbol	PID nnm	Well	Construction	Descr	Number, iption, lesults	Depth (ft)
		Very soft, gra subangular to Very soft, gra ; wet; subangular Very soft, gra subangular to Very soft, gra	y, Poorly G o subround g y, Poorly G ular to subro y, Poorly G o subrounde y, Poorly G of organic BO	raded Sand (SP) ; wet; nonpla raded Gravel with Sand (GP) gravel; nonplastic fines. raded Sand with Silt and Grave unded gravel; nonplastic fines raded Gravel with Sand (GP) ; d gravel. raded Sand (SP); wet; nonpla matter stuck in shoe of rod. TTOM OF BORING PLETED ON 7/31/2019	; e/ (<i>SP-SM</i>) :. wet;	30.0 32.9 33.7 34.2 34.2 35.0 35.2							
m 2. Gi	ay hav roundv	e slid down in the tu	ery was low in ube prior to re	TES the upper part of the run, the soil s noval from the ground. s estimated during probing and sho	· –						neStop ks, Alaska		
4. C sa	T = cor ample;	KEY for definitions rosion test sample; GE = geotechnical s stic Tube - No Soi	TR = thermal sample; AR = <u>LEG</u>	resistivity sample; EN = environme archeological sample.			LO	GO			·	BE 19-04	Ļ
†□	2" Pla	stic Tube with Soil		☑ ☑ ☐ ☑ ☑ Ground Water Level ATE		Aug	ust 2	019			1'	1-4-06060-6	56
	Run N	10.				SH/ Geote	ANN chnical	ON and E	& WI	LSO ental Co	N, INC.	Figure Sheet 2 of 2	A-2

Appendix B Field Forms

10/26/2015

SHANNON & WILSON, INC.

Well No. 03-20 MW-19-00

WELL D	EVELOPMENT LO	G 90 Hw-1903
Owner-Client Shamen & Wilson Location Fal-back AK, FAI Weather Rola, tophwhd SOF Development Personnel	Well No. Project No Date	11-4-06050-656 - 41-4-61 11-4-06050-656 8/2/2019
Diameter and Type of Casing:	2" PVC	
Total Depth of Well Before Development (feet Depth to Water Before Development (feet below	ow top of casing):	3.86
Depth to Screen Top and Bottom (from Constr		Top: ~18 Bottom: ~23
	elopment Details	i mai
Feet of water in well 19,02	Time pumpi	
Gallons per foot	Flow rate (g	al/min) ~ Gen/min
Gallons in well 3, 2 4	Flow-rate m	easurement method:
Surge method	. Vis	on)
Pump used Diaphragm	Time pumpi	ing ended 1605
Tubing used (ft) 30	Gallons Pur	nped 90 m
	Disposal:	GAC#2
Depth to Water After Development (feet below	/ top of casing):	3,84
Total Depth of Well After Development (feet b		22.88
<u>(</u>	Observations	
Time Water Clarity (Visual)	Time	Water Clarity (Visual)
VI VI LII	Time	
1951 Extremizturia		
1755 Turbid	8 B	
1999 Slightly Torbit		
CON NO. CULLI		

1601 Vog Sightyfind 1602 Cleat 1604 Cleat

E.

_		
3	- L.	

NOTES:

NA

Diameter of Well [ID-inches]	11/4	2	3	4	6	8
Gallons per lineal foot	0.08	0.17	0.38	0.66	1.5	2.6

Well No. MW- 19-01-03-20

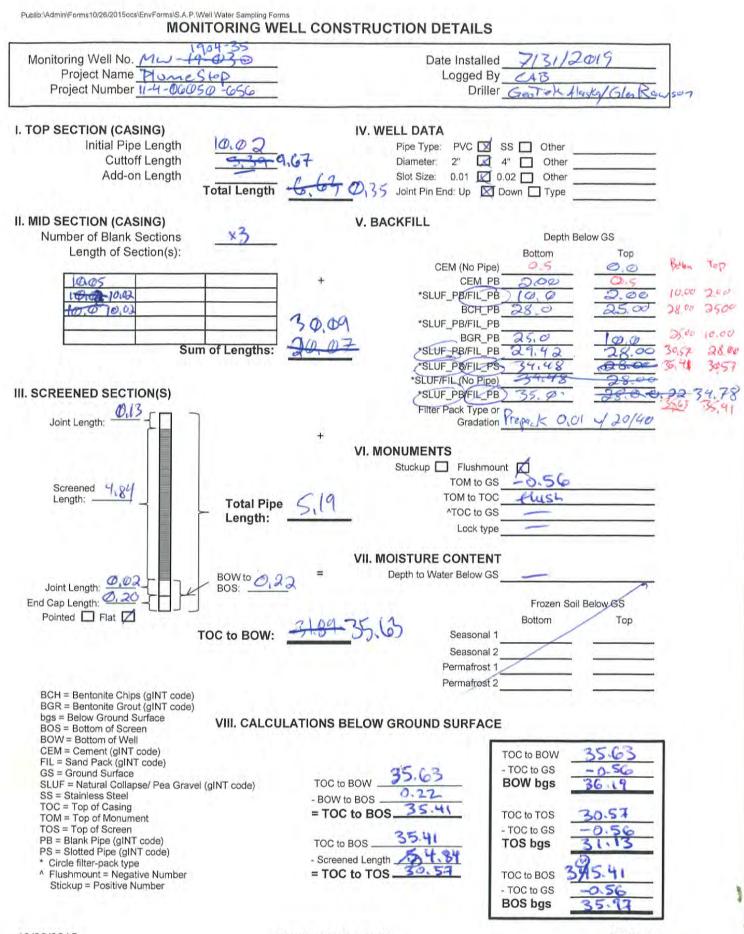
	mant Wilson In	d			_		11-4-06050-656
Location <u>Fa</u> Sampling Personnel CA		-		*	-		8/2/2019 MW-19-01
Weather Conditions R.		Air	Temp. (°F	Cas	-	Time started	
	in, comprising		Temp. (F	24	— ті	ime completed	
Sample No. <u>Ma</u> Duplicate Equipment Blank Pump	Jule	B-20	Time Time	-			
Purging Method Pumping Start Purge Rate (gal./min.) ~ 0 Pumping End 16	25 P.75	d pump		nate Total D ured Total D De	Depth of Well Depth of Well Ppth to Water	Type of Casing Below MP (ft.) Below MP (ft.) Below MP (ft.)	22.88
Pump Set Depth Below M	AP (ft.) 20.88			Depth to I		Below MP (ft.) Water in Well	19.04
	ng (ft.) 30					allons per foot	
TruPoly Tubi						Gallons in Well	
						Volume (gal.)	
			Purge Wa	ter Disposa	IGACH.		Juin 100 - gall
Monument Condition	Food						
Casing Condition <u>Ca</u> Wiring Condition (dedicated pumps) <u>A</u> Measuring Point (MP) <i>To</i>	p of Casing (TOC)		Monu	nont tuno: (Stickup	/ Eluchmount	
measuring Foint (MF)	p or casing (TOC)	M	easuremer	nent type: (it method:	Stickup Rod & level	/ Flushmount / Tape measu	re
Top-of-casing to monume Monument to ground surfa Lock present an Well name legit Evidence of fros	d operational N/A le on outside of we			Da Datalo	talogger type ogger serial # ole length (ft.)	n/a n/a	
Notes <u>Well der</u>	eloped imm	rectatly	y befor	e sany	pling, c	90 gellons	Ourgeel.
		WELL CA	SINGVOL	UMES			
Diameter of Well [ID-inches]	CMT	11/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

Well No. 0 MW-9 A 0

TON

• 2

Fiel	d Parameter Sample Ob			Parameters		>3 well volumes purged
		FIE	LD PARAMETERS [st	abilization c	riteria]	/
Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
625	Putar Start					
676	53	0,32	405,4	6.78	67,6	Class
629	4.9	Q.34	4833 1	6-66	53,9	eles
632	4.9	0.33	403.7	(e.70	-38:4	dar
635	4.8	Ø,34	403.3	4.74	28.3	Clear
638	-1.8	0,34	403,0	4.77	20.9	Cler
640	Sample					
	PC		A STATE	1		


	 	L	1	
 1. T	 10	£		
			eller .	
			12 million (1997)	

Laboratory SGS + Test Amarica

MON

Sample Containers	Preservatives	Du
Test America		□
	HC	므
	flet	므
	HC	<u>_</u>
	HC	므
	+(2)	
	HNOS	
2	HNOZ	
		Test America Hcl Hcl Hcl Hcl Hcl

Well No. 1903-20 Mw-1900

10/26/2015

SHANNON & WILSON, INC.

Well No.

1w-19-0 1904-35

			PMENT LO	G	04-35	
Owner-Client Shanner	+Wilson, I.	nc.	Well No.	Mw-	19-000	\Rightarrow
Location Forberks	AK, Kurnten	no traing Cut	SProject No	11-4-6	06050	-656
Weather Rain, Se	D°F		Date	8/2/2	019	
Development Personnel	CAB	-			4	
Diameter and Type of Casir	ıg:	Q" PI	10			
Total Depth of Well Before	Development (fe	et below top	of casing):	35.55		
Depth to Water Before Dev	elopment (feet b	elow top of c	asing):	35,550	EA3 8.0	Xe
Depth to Screen Top and Be	ottom (from Cons	struction Log):	Тор: ~3	5 Bottom	~ 30
	De	evelopmen	t Details			
Feet of water in well	27.49		Time pumpi	ing started	12:12	
Gallons per foot	0.17		Flow rate (g	al/min)	~4,5	admin
Gallons in well 9.67	2			easurement		3
Surge method Block			Nisual			
Pump used Diaphr			Time pumpi	na ended	1239	
Tubing used (ft) 45			Gallons Pur	1.7.0.000.000.000	95 gul	
, and g about (.t <u>)</u>		12 0	Disposal:	GACH	2	
		<u>Observa</u>	tions	1		
Time Water C	larity (Visual)		Time	Wat	ter Clarity (Vi	sual)
1212 Extrem	te torbid	1	1239	Clears	-	
1213 Stichty	Carl Martin	emp Stop	1239	Duna	Stern	
1219 1/2 1	I thid - Rung		10 01	- P	-F	
1274 Teh		Stort				
12 24 1300	7	1				
1229 Slightly	Urbid			-		
1226 Clear	J					
1227 10-bic						
1230 Sightly	forbid			1		
1235 VousP.	attletendid					*
1238 Clas	29.00]		a.		
NOTES:			*			
	WF	ELL CASING	VOLUMES	2		
Diameter of Well [ID-inches]	11/4	2	3	4	6	8
Gallons per lineal foot	0.08	0.17	0.38	0.66	1.5	2.6

SHANNON & WILSON, INC

3

25

	man & Wilson		/ 1	_		11-4-060
Location Farba	aks Als Fornt	end Training	Centos	-		8/2/2017
Sampling Personnel		A: T (95)	-406	-		MW-19-00
Weather Conditions	1	Air Temp. (°F)	501	- Ti	Time started	
110.	2-1904-35				ne completed	1939
Sample No.	V-19-020	Time	1332			
Duplicate		Time	1337	7		
Equipment Blank		Time		-		
= 1 - 1				7		
Pump _ 🛶	P					
Purging Method portal		nn	Di	ameter and T	vne of Casing	D"PUC
	316			epth of Well		
Purge Rate (gal./min.) ~0.7	Sallah			epth of Well	2010 C 10	successive statements and the successive statements and the
Pumping End 13		() () () () () () () () () ()		pth to Water		
				ce (if frozen))
Pump Set Depth Below MP (Water in We	27.51
KuriTec Tubing (allons per foo	the second s
TruPoly Tubing ((ft.)				allons in We	
		el. dated		Purge Water)-6+15,75 +
C	1	Purge Wate	r Disposa	GAC #	2	
Monument Condition (70	oc					
Casing Condition	e nl					
	30					
Wiring Condition	1/0					
Wiring Condition	JA					
(dedicated pumps)	J/A_					
	Casing (TOC)	Monum		Stickup	/Flushmoun	
(dedicated pumps)	Casing (TOC)	Monum Measurement			/ Flushmoun / Tape meas	
(dedicated pumps)			method:	Rod & level	and the second se	
(dedicated pumps)	(ft.) - 0,56		method: Da	Rod & level	/ Tape meas	
(dedicated pumps) Measuring Point (MP) <i>Top of</i>	(ft.) - 0,56	Measurement	method: Da Datalo	Rod & level	/ Tape meas n/a	
(dedicated pumps) Measuring Point (MP) <i>Top of</i>	(ft.) - 0.56 (ft.)	Measurement	method: Da Datalo	Rod & level talogger type ogger serial #	7 Tape meas n/a n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to monument (Monument to ground surface (Lock present and o Well name legible of	ft.) - 0.56 $ft.) - 0.56$ perational 0/A on outside of well	Measurement	method: Da Datalo	Rod & level talogger type ogger serial #	7 Tape meas n/a n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to monument (Monument to ground surface (Lock present and o	ft.) - 0.56 $ft.) - 0.56$ perational 0/A on outside of well	Measurement	method: Da Datalo	Rod & level talogger type ogger serial #	7 Tape meas n/a n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to monument (Monument to ground surface (Lock present and o Well name legible of	ft.) - 0.56 $ft.) - 0.56$ perational 0/A on outside of well	Measurement	method: Da Datalo	Rod & level talogger type ogger serial #	7 Tape meas n/a n/a	
(dedicated pumps) Measuring Point (MP) <u>Top of</u> Top-of-casing to monument (Monument to ground surface (Lock present and o Well name legible o Evidence of frost-ja	ft.) - 0.56 $ft.) - 0.56$ perational 0/A on outside of well	Measurement	method: Da Datalo	Rod & level talogger type ogger serial #	7 Tape meas n/a n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to monument (Monument to ground surface (Lock present and o Well name legible of	ft.) - 0.56 $ft.) - 0.56$ perational 0/A on outside of well	Measurement	method: Da Datalo	Rod & level talogger type ogger serial #	7 Tape meas n/a n/a	
(dedicated pumps) Measuring Point (MP) <u>Top of</u> Top-of-casing to monument (Monument to ground surface (Lock present and o Well name legible o Evidence of frost-ja	ft.) - 0.56 $ft.) - 0.56$ perational 0/A on outside of well	Measurement	method: Da Datalo	Rod & level talogger type ogger serial #	7 Tape meas n/a n/a	
(dedicated pumps) Measuring Point (MP) <u>Top of</u> Top-of-casing to monument (Monument to ground surface (Lock present and o Well name legible o Evidence of frost-ja	ft.) - 0.56 $ft.) - 0.56$ perational 0/A on outside of well	Measurement	method: Da Datalo	Rod & level talogger type ogger serial #	7 Tape meas n/a n/a	
(dedicated pumps) Measuring Point (MP) <u>Top of</u> Top-of-casing to monument (Monument to ground surface (Lock present and o Well name legible o Evidence of frost-ja	ft.) - 0.56 $ft.) - 0.56$ perational 0/A on outside of well	Measurement	method: Da Datalo	Rod & level talogger type ogger serial #	7 Tape meas n/a n/a	
(dedicated pumps) Measuring Point (MP) <i>Top of</i> Top-of-casing to monument (Monument to ground surface (Lock present and o Well name legible o Evidence of frost-ja	ft.) <u>- 0.56</u> ft.) <u>- 0.56</u> perational <i>N/A</i> on outside of well cking <u>N/A</u> <u>a Hot Jove</u> <u>WELL</u>	Measurement Mea	method: Datak Isured cat	Rod & level	7 Tape meas n/a n/a	ed.
(dedicated pumps) Measuring Point (MP) <i>Top of</i> Top-of-casing to monument (Monument to ground surface (Lock present and o Well name legible o Evidence of frost-ja Notes Notes	(ft.) <u>- 0.56</u> (ft.) <u>- 0.56</u> perational N/A on outside of well cking <u>N/A</u> a A or <u>Aove</u> WELL <u>CMT</u> 11/A	Measurement Mea	method: Datak sured cat	Rod & level Italogger type ogger serial # ole length (ft.)	7 Tape meas n/a n/a 5 Dorg	ure
(dedicated pumps) Measuring Point (MP) <i>Top of</i> Top-of-casing to monument (Monument to ground surface (Lock present and o Well name legible o Evidence of frost-ja	ft.) <u>- 0.56</u> ft.) <u></u> perational <i>N/A</i> on outside of well icking <u></u> <u>altor deve</u> <u>well</u>	Measurement Mea	method: Datak Isured cat	Rod & level	7 Tape meas n/a n/a	ed.
(dedicated pumps) Measuring Point (MP) <i>Top of</i> Top-of-casing to monument (Monument to ground surface (Lock present and o Well name legible o Evidence of frost-ja Notes Notes	(ft.) <u>- 0.56</u> (ft.) <u>- 0.56</u> perational N/A on outside of well cking <u>N/A</u> a A or <u>Aove</u> WELL <u>CMT</u> 11/A	Measurement Mea	method: Datak sured cat	Rod & level Italogger type ogger serial # ole length (ft.)	7 Tape meas n/a n/a 5 Dorg	ure

Well No. 904-35 MW-19-020

	Sample Ob		gal purged p	prior to	sampli.	15
		FIE	LD PARAMETERS [st	abilization c	riteria]	S
Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
16	2.3 2.2	0,42	296,9	6.59	74.4	Slightly turbid
120	3.2	0,42 0,42 0,42	293.9	6.81	39.0	Class Class Class
332	2.2	0.42	290,5	6.84	23,4	Sleet Cleas
35	2,2 Sample	0,42	289.9	6,86	14.8	Clour
_						
	-					

Laboratory SGS + Test America

Analysis	Sample Containers	Preservatives	Dup
PFAS × 21		NA	
DRO/RRO		Hei	므
GRO		(HC)	므
BTEX		HC)	
TOC		HCI	므
Doc		HC	
Dissolved Fet Mg		HNOS	
Dissolved Fet Mg Total Fet Mg +LA		HNOJ	

MON

Well No. 1904-35 MW-19-020

Project Number:102519-005	Location: Onsite FAI Pilot Study Loca	ation		Page 1 of
Date: 10/29/2019				-
Field Staff: APW, CAB				
Injection Well Name	Latitude	Longitude	Installation Date	Abandonment Date
IP-01	64.80489116	-147.8942313	10/29/2019	10/29/2019
IP-02	64.80488155	-147.8941998	10/29/2019	10/29/2019
IP-03	64.80486589	-147.8942055	10/30/2019	10/30/2019
IP-04	64.80486164	-147.8942288	10/31/2019	10/31/2019
IP-05	64.80487502	-147.8942674	11/1/2019	11/1/2019
IP-06	64.80488266	-147.8942482	11/2/2019	11/2/2019
IP-07	64.80487099	-147.8942234	11/3/2019	11/4/2019
IP-08	64.80487716	-147.8942092	11/4/2019	11/4/2019
IP-09	64.80488339	-147.8942227	11/5/2019	11/5/2019
IP-10	64.80488779	-147.8941756	11/6/2019	11/6/2019
IP-11	64.8048634	-147.8941861	11/7/2019	11/7/2019
IP-12	64.80485417	-147.8942109	11/8/2019	11/8/2019
IP-13	64.80489238	-147.8941927	11/9/2019	11/9/2019
IP-14	64.80488996	-147.8941735	11/10/2019	11/10/2019
IP-15	64.804875	-147.8941789	11/11/2019	11/12/2019
IP-16	64.80484687	-147.8942272	11/12/2019	11/12/2019
IP-17	64.80487575	-147.8942363	11/13/2019	11/13/2019
IP-18	64.80487846	-147.8942361	11/13/2019	11/13/2019
IP-19	64.80487847	-147.8942273	11/13/2019	11/13/2019
IP-20	64.80487566	-147.894228	11/13/2019	11/13/2019

Injection Well Log

Owner/Client	DOT& PF	Project No.	10-2519-005-
Location	FAT	Date	the second se
Sampling Personnel	GCD		MW-1903-20
Weather Conditions	SNOW overcast Air	Temp. (°F) 3 1 Time started	the second se
0005000 00000000 -	100-1	Time completed	
Sample No.	MW-1903-20	Time 1249	
Duplicate	-	Time	
Equipment Blank		_ Time	
Purging Method	whole pump	Diameter and Type of Casing	zupre
Pumping Start		Approximate Total Depth of Well Below MP (ft.)	
Purge Rate (gal./min.)		Measured Total Depth of Well Below MP (ft.)	
Pumping End		Depth to Water Below MP (ft.)	
· · · · · · · · · · · · · · · · · · ·		Depth to Ice (if frozen) Below MP (ft.)	No. of Concession, Name of
Pump Set Depth Belo	ow MP (ft.) <u>・ ここ</u>	Feet of Water in Well	
	Tubing (ft.) 🔽 🥰 🚬	Gallons per foot	And the second se
	5(1)	Gallons in Well	the second se
		Purge Water Volume (gal.)	
		Purge Water Disposal GAC Jrum, Jul	to ground
Monument Condition	Good		Surface
			730-51
Casing Condition	900 d		Dway from
7			+woigh
14			hose
Measuring Point (MP)	Top of Casing (TOC)	Monument type: Stickup Flushmount	
Top-of-cas	sing to monument (ft.) 🧿	.44	
Monument	to ground surface (ft.)	151	
🥑 🛛 Well name I	nt and operational $-N(A, w)$	lock a well was tabelled Mer to a	-19-01, chan
Evidence of	frost-jacking <u>N</u> =	to a	NW-1903-20
1	is not as a		-0
Notes Flow	diversed to flow slow	(y into GAC, fast enough to cease (No.6 gpm)	essure
	WELL CA	ASING VOLUMES	

Diameter of Well [ID-inches]	11/4	2	3	4	6	8
Gallons per lineal foot	0.08	0.17	0.38	0.66	1.5	2.6

har

Well No. MW-1903-20

Field Parameter Instrument _____YSI pro plus

Circle: Parameters stabilized OR >3 well volumes purged

Sample Observations

Notes ____

		FIELD	PARAMETERS [stabili	zation criter	laj	
Time	Temp. (°C) [± 0.2 °C]	Dissolved Oxygen (mg/L) [± 0.1 mg/L]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10mV]	Turbidity (visual)
1211	5.0	0.53	409.2	0.89	-48,0	CIPEr
1214	5.0	0:30	416,6	6.96	-70,5	Clear
1217	5.0	0.22	420.4	6.99	-89.2	Clear
1220	5.0	0,13	422.1	7102	-97.5	Clesk
1223	510	0.16	423.1	703	-104.0	cles
1224	TUIN	off pu	MP. AK	GACE	9	
1231	TUR	pump br				
1233	4.3	DILS	417.3	702	-75.7	cles
1230	4.9	DIIS	421.1	7.05	-91.9	aler
1231		A second second			1. C. 1. C. 1.	State of the second
1240	5.0	Dolz	424.4	7,00	-102,9	Clear
1243		0.11	426.1	7.08	-107.5	Clear
1246	5.0	0.11	427.5	7.07	-110.8	clear
1249	Sample					
		1				

FIELD PARAMETERS [stabilization criteria]

0

Laboratory Test Ancerica / Eurofins

Analysis	Sample Containers	Preservatives
PFAS EPA 537M/WS-LC-0025	2x250 mL	none
VOC EPA SW8260	3x40 mL	HCI
Metals EPA 200.8	125 mL HDPE	HNO3
DRO AK 102	2x1 L amber	HCI
RRO AK 103	2x1 L amber	HCI

Well No. MW-1403-20

	emp. (°F) <u>3</u>	Project No. $102519 - 005$ Date $10/25/19$ Well MU - 909 - 36 Time started 1905 ne completed 1555
Sample No. <u>MW-(90Y-3V</u> Duplicate Equipment Blank	Time 150 2 Time Time	
	Ga	Below MP (ft.) Below MP (ft.) Below MP (ft.) Below MP (ft.) Water in Well Construction Allons per foot 0.17 allons in Well 4.38 Volume (gal.)
Monument Condition Good / Frozen		2 30 ft. DW24 from
Casing Condition Good		well shrough
Top-of-casing to monument (ft.)	1 Flues	Flushmount
Well name legible on outside of well Evidence of frost-jacking		MW-19-02, changed to MW-1904-36
Notes well Manument (id was to open A primed from rate as 1000 erased (~0.4 gpm)	tore shut, Ne >> possible set	eded to three end
WELL CAS	NG VOLUMES	

WEEL CASING VOLUMES							
Diameter of Well [ID-inches]	11/4	2	3	4	6	8	
Gallons per lineal foot	0.08	0.17	0.38	0.66	1.5	2.6	

hen

		MON	ITORING WELL S	AMPLING	G LOG		20
Fie	eld Parameter Sample Ot	Notes		Stable		R 3 well volumes purged	
Time 1439 1438 1447 1448 1448 1457 1456 1459 1459 1459	Temp. (°C) [± 0.2 °C] 1.3 1.9 7.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	Dissolved Oxygen (mg/L) [± 0.1 mg/L] 0:74 @ 0:74 @ 0:75 0:75 0:72 0:77	Conductivity (μ S/cm) [± 3%] 2.80.5 2.80.5 2.87.5 2.87.8 2.87.8 2.87.8 2.87.8 2.87.5 		ORP (mV) [± 10mV] -24.4 -68.9 -91.7 -89.3 -94.2 -94.2 -94.2 -01.3 -101.3 -101.3 -103.2	Turbidity (visual)	x Sp. con

Laboratory test America/ eurofans

Analysis	Sample Containers	Preservatives
PFAS EPA 537M/WS-LC-0025	2x250 mL	none
VOC EPA SW8260	3x40 mL	HCI
Metals EPA 200.8	125 mL HDPE	HNO3
DRO AK 102	2x1 L amber	HCI
RRO AK 103	2x1 L amber	HCI

HON

Well No.

MU-1904-36

Owner/Client <u>Fairba</u> Location <u>Plume</u> Sampling Personnel <u>RLW</u> , A Weather Conditions <u>SUNN</u> Sample No. MW	, some cio	uas Ai	r Temp. (°F)	pont 5 1335	- - - - Tir	Date	0. 102519-005 e 12/17/19 II MW-1903-20 d 1100 d 1530
Sample No. <u>MW -</u> Duplicate_ <u>MW</u> Equipment Blank	2903 - 20	TRW	Time Time	13250	-		
Pump <u>Whow</u> Purging Method <u>portable</u> Pumping Start <u>1237</u> Purge Rate (gal./min.) <u>0.5 to</u> Pumping End <u>13353</u> Pump Set Depth Below MP (ft.) KuriTec Tubing (ft.) TruPoly Tubing (ft.)	<u>y</u> dedicated 38 17 30	pump	Measur	ate Total D red Total D De Depth to I	pepth of Well I pepth of Well I pth to Water I ce (if frozen) I Feet of Ga G	Below MP (ft. Below MP (ft. Below MP (ft. Below MP (ft. Water in We allons per foc Gallons in We Volume (gal.	$\frac{21.75+1.2}{1.2} = 22.9$ $\frac{7.31}{1.5.64}$ $\frac{15.64}{1.5}$ $\frac{12.65}{1.2}$
Monument Condition 6000			_				
Wiring Condition <u>MA</u> (dedicated pumps) Measuring Point (MP) <u>Top of Ca</u>	asing (TOC)	N	Monum leasurement	ent type: method:	Contractory of the local division of the loc	/ Flushmoun / Tape meas	
Top-of-casing to monument (ft.)					talogger type		<u> </u>
Monument to ground surface (ft.) Lock present and ope Well name legible on Evidence of frost-jack	rational N/A outside of well	one	– Mea		ogger serial # ble length (ft.)	n/a n/a	
Notes Water was ve	iry black			_			
	v	ELLC	ASING VOLU	IMES			
Diameter of Well [ID-inches]	СМТ	11/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

Well No.

MW-1903-20

how

Field Parameter Instrument VSI E Circle one: Parameters stabilized or >3 well volumes purged) Sample Observations Black grainy water Notes VSI in Bucket, not in Flow through (cl)

FIELD PARAMETERS [stabilization criteria]

Temp.	Dissolved	Conductivity (uS/cm)	ъН	OBP(m)/	
[± 3%]	[±10%]	[± 3%]	[± 0.1]	[± 10 mV]	Water Clarity (visual)
3.0	10.6	470.3	7.43	2.96.6	black
	4.07	592	8.00	276.5	11
2.300	·			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2.1					11
				and the second	1
				and the second se	11
			0.17		h
the second se		921	0.3	162.0	11
Reiss	5				
			1		
-					
	(°C) [± 3%] 3.5 3.5 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7	(°C) Oxygen (mg/L) [±3%] [±10%] 3.5 4.07 2.3 - 2.1 (.56 3.2 - 3.4 0.87 3.5 0.87 3.6 0.972 3.7 0.972 3.6 0.972	(°C) Oxygen (mg/L) Conductivity (μ S/cm) [±3%] [±10%] [±3%] 3.9 [0.6 470.3 3.5 4.07 592 2.3 - - 2.1 (.56 962 3.2 0.87 927 3.4 0.87 927 3.5 0.92 930 2.9 0.972 930 2.9 0.39 921	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Laboratory SGS + Test America

	Du
HC1	므
HCI	
HND 3	므
	므
	므
none	므
	HCI HND 3

2

MON

Owner/Client	Pume Stop		Project No. 102519-005
Location	FAL autside gente		Date 6/16/20
Sampling Personnel	ARM	Paral March 2012	Well 1903-20
Weather Conditions	Clear Sunny Air	r Temp. (°F) ~657F	Time started 9:45
		Tir	ne completed // 26
Sample No.	MW-1903-20	Time <u>126</u> Time	
Duplicate	MW-2903 20	Time	
Equipment Blank	NTA	Time	
Pump	Peripump B		
	portable / dedicated pump	Diameter and T	ype of Casing 2" PVC
Pumping Start		Approximate Total Depth of Well E	
Purge Rate (gal./min.)		Measured Total Depth of Well E	
Pumping End	11:00, 11:25		Below MP (ft.) 5.0.5
r uniping End.	11:00 1 11 23	Depth to Ice (if frozen)	
Pump Set Depth Bel	ow MP (ft)~27		Water in Well
KuriTec	Tubing (ft.)		allons per foot
TruPoly	Tubing (ft.) Tubing (ft.)6		allons in Well ~ 3 gallows
Trui oly			Volume (gal.)
		Purge Water Disposal	
Monument Condition	Gand		
Monument Condition.	0.00	disposal-	through NRC
Casing Condition	(300)		
Wiring Condition (dedicated pumps)	NA		
Measuring Point (MP)	Top of Casing (TOC)		/ Flushmount / Tape measure
Top-of-casing to mon	nument (ft.) - 6.107	Datalogger type	n/a
Monument to ground s	surface (ft.) 2.54	Datalogger serial #	n/a
		Measured cable length (ft.)	n/a
Va Lock prese	nt and operational 🖊 🗥		
	legible on outside of well		
	f frost-jacking No		
0.			
Notes Hope	H = feet + inclus?	Neur be 5'2:5"	
notes none		and a con	
	WELLO	ASING VOLUMES	
	WELL CA		

Diameter of Well [ID-inches]	CMT	11/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

ŀ

Well No.

MW-1903-20

Field Parameter Instrument	Pp-Plus	B	Circle one	Parameters stabilized or >3 well volumes purged
Sample Observations	water	drk	color	(group black)
Notes				

FIELD PARAMETERS [stabilization criteria]

Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
11110	12 0 /0	121070]		1- 0.11		
						/
_						
				/		
			/	/		
			/			
_				_		
		/				
	/					

	0	
Laboratory	SGS	

Analysis	Sample Containers	Preservatives	Dup
			旦
			므
			□ / [●]
			□
		-015	<u>_</u>

Stopped PUMP @ >0 /1 to verify sampling of MDN; Restarted @ 1115 by 1125, or so water was lighter but Still denk; not alear enough to sample at analytical laboratory. collect carbon content sample for regenesis.

Well No.

MW-1903-20

NO

	00							
Owner/Client	And and a state of the state of	DOT			Sec. 1			102519
Location	FAI pe	ume sto	p			-	Date	
Sampling Personnel					FAI		We	
Weather Conditions	_overce	757	Air	r Temp. (°F)	520		Time started	
						1.1	me completed	1400
Sample No	MW-19	103-2	0	Time	1315			
Dunlicate	mw -2	103-2	0	- Time	the second se	-0		
Equipment Blank		30 3 0		- Time	4.1-12			
				-				
Purging Method	0.26				Di	amates and T		a"PVC
Pumping Start	the second se	mmp		Approvim		ameter and T epth of Well	The second residence and the second second	
Purge Rate (gal./min.)	the same of the							21.57 + 1.27-
Pumping End				Measu		pth to Water		
r amping Ena	1200					ce (if frozen)		
Pump Set Depth Be	low MP (ft)	21			Deptilitoit		Water in We	
r unp der Deptil De	Tubing (ft.)						allons per foo	and the second se
	rubing (n.)_	30					allons in We	the second se
						Purge Water		
				Purge Wat		design		
Monument Condition	and			Fuige Wat	er Dispusai	offshe	the second se	Alac un crala
wonument contaition	year					OthSit	disposal	(NRC US Ecolog
	()						and the second se	
	- and						1.4	
Casing Condition	jood							
	opod							
Casing Condition Measuring Point (MP) Top-of-c: Monumen	<u>Top of Casi</u> asing to monu t to ground su ent and operate legible on ou	ument (ft.) _ urface (ft.) _ tional utside of we	<u>2,5</u>	F= (cass		Stickup Lier fligr	Flushmount กาอทฯเม	ent)
Casing Condition Measuring Point (MP) Top-of-ca Monumen	<u>Top of Casi</u> asing to monu t to ground su	ument (ft.) _ urface (ft.) _ tional utside of we	- 0.	FP(cass		Stickup Lier fliar		ent)
Casing Condition Measuring Point (MP) Top-of-ca Monumen	<u>Top of Casi</u> asing to monu t to ground su ent and operate legible on ou	ument (ft.) _ urface (ft.) _ tional utside of we	- 0. 2.5.	FP(cass		Stickup Ler flar		ent)
Casing Condition Measuring Point (MP) Top-of-ca Monumen X Lock prese Well name Evidence of Notes 7	Top of Casi asing to monu t to ground su ent and operation legible on out of frost-jacking W.P. N	ument (ft.) _ urface (ft.) _ tional utside of we	- 0 2.5. ho	FP(cass		Stickup Lier fligr		ent)
Casing Condition Measuring Point (MP) Top-of-ca Monumen X Lock prese Well name Evidence of Notes 7	Top of Casi asing to monu t to ground su ent and operate legible on out of frost-jacking	ument (ft.) _ urface (ft.) _ tional utside of we	- 0. 2.5.	FP(cass		Stickup Lier fliar		ent)
Casing Condition Measuring Point (MP) Top-of-ca Monumen X Lock prese Well name Evidence of Notes 7	Top of Casi asing to monu t to ground su ent and operation legible on out of frost-jacking W.P. N	tional 4, 0	- 0. 2.5. ho ho	2 2	ngshig	Stickup her flar		ent)
Casing Condition Measuring Point (MP) Top-of-ca Monumen Control Contro	$\frac{1}{Top of Casi}$ asing to monut to ground su ent and operate legible on out of frost-jacking $\frac{WP}{WP} = S$	tional 4, 0	- 0 2.5. 1 ho 5700 DTW WELL C/	ASING VOL	UMES		n monyw	
Casing Condition Measuring Point (MP) Top-of-c: Monumen X Lock prese Well name Evidence of Notes	$\frac{1}{Top of Casi}$ asing to monut to ground su ent and operate legible on out of frost-jacking $\frac{WP}{WP} = S$	tional 4, 0	- 0. 2.5. ho ho	2 2	ngshig	Stickup Lier fligr		ent) <u>8</u> 2.6

Negen

Well No. MW-1903-20

MDN

6

Field Parameter Instrument <u>YSI pro plus</u> <u>D</u> <u>Circle: Parameters stabilized OR >3 well volumes purged</u> Sample Observations

Notes

Time	Temp. (°C) [± 0.2 °C]	Dissolved Oxygen (mg/L) [± 0.1 mg/L]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10mV]	Turbidity (visual)
12.27	5.7	0.31	566	6.91	-125,5	black.
1280	5,7	0.24	575	6.81	-147.9	beack
1203	5.7	0.20	567 574	6.79	-162.7	beack
1236	5.7	0.19	574	6.80	- 170. 1	ger block
1239	5.4	0,17	564	6.81	-176.1	they black
1242	5.6	0.14	570	6.82	-180,3	1 Obcack
1245	5.7	0.13	571	6.84	-184.3	black
1248	507	0,12	568	6.85	-185.7	black
1251	5.7	0.14	580	6.86	-186.6	black
1254	5.6	0.13	574	6.88	-189.9	beack
1259	5.7	0.14	576	6.90	-193.4	black
1302	5.7	0.10	578	6.91	-194.4	black
1315	sample	/		1.000		
			Y			
	1 h					· · · · · · · · · · · · · · · · · · ·
				1		
1						

FIELD PARAMETERS [stabilization criteria]

5651 Test America (PFAS) Laboratory

Analysis	Sample Containers	Preservatives	
PFAS EPA 537M/WS-LC-0025	2x250 mL	none	
VOC EPA SW8260	3x40 mL	HCI	
Metals EPA 200.8	125 mL HDPE	HNO3	
DRO.AK 102	2x1 L amber	HCI	
RRO AK 103	2x1 L amber	HCI	
TOC		HEC	
500		<u></u>	

Owner/Client	FAI/DOT			_	<u> -</u>	Project No	No. of Concession, Name of
Location Sampling Personnel	Arm	u Stop	0	_	_	Date	
Weather Conditions	Clier	A	ir Temp. (°F)	25	Ξ.,	vve Time starte Time complete	
Sample No. Duplicate Equipment Blank	MW-1903-20		_ Time _ Time _ Time		_		
Purging Method Pumping Start Purge Rate (gal./min.) Pumping End Pump Set Depth Belo	Der p JMP 1115 NO.15 1154 Dow MP (ft.) 2019' Fubing (ft.) 223'		Approxim Measu	ate Total red Total C	Depth of Wel Depth of Wel Depth to Wate Depth to Wate Concerning Feet of Concerning	Type of Casing I Below MP (ft. I Below MP (ft. Below MP (ft. Below MP (ft. Mater in We Gallons per foo Gallons in We	10.020 21.70+1.12=22.8 6.88
Monument Condition	Good		Purge Wat	er Dispos	al <u>GAC</u>	r Volume (gal.) <mark>65</mark>	Return purger
Casing Condition	good						
	<u>Top of Casing (TOC)</u> sing to monument (ft.) _ to ground surface (ft.) _	0.20	Monument	type:	Stickup	Flushmount	
년 Lock preser 번 Well name I 연 Evidence of	it and operational N/ egible on outside of wel frost-jacking NO	ANIA				-) i i i	
Notes							
		WELLO		IMES			
Diameter of Well [ID-inches]		11/4	2	3	4	6	8
Gallons per lineal foot		0.08	0.17	0.38	0.66	1.5	2.6

MDa

Field Parameter Instrument <u>YSI pro plus</u> Circle: Parameters stabilized OR >3 well volumes purged Sample Observations <u>Slightly gray</u> writer Notes

Time	Temp. (°C) [± 0.2 °C]	Dissolved Oxygen (mg/L) [± 0.1 mg/L]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10mV]	Turbidity (visual)
117	4.1	1,72	430.7	7.09	133.4	blick/gray
1124	4.0	0.64	467.1	711	64.4	gray U
1129	4.0	0.38	466.3	7.10	59.4	area giry
1134	90	6.34	1424	710	46.2	SHORAN
int	40	0.22	480.0	709	31.30	Straig
1144	4.1	0.30	480.6	7.06	23.4^	stolay
1148	4.1	0,28	477.2	7.07	11.14	SIFLINY
1151	4.1	0.25	484.8	7.08	7.2.	slight
1154	4.0	0.25	455.9	7.10	1.41	SIt gray
-						

FIELD PARAMETERS [stabilization criteria]

Laboratory Test Ame SGS

ND

Analysis	Sample Containers	Preservatives
PFAS EPA 537M/WS-LC-0025	2x250 mL	none X25 PF
VOC EPA SW8260	3x40 mL	HCI
Metals EPA 200.8	125 mL HDPE	HNO3 Mg, CA
DRO AK 102	2x1 L amber	HCI
RRO AK 103	2x1 L amber	HCI
TOC, DOC	1×125mL Amber each	HCI
TW Q 7.	AL	A)
airport		

Well No.

Owner/Client	FAI		Project No. 102 519-005
Location	FAI Plume Stop		Date 3-15-21
Sampling Personnel	JKR		Well MW-1903-20
Weather Conditions	mostly alean A	ir Temp. (°F) // ^c	Time started / 3:4 0
			Time started /3:9 0 Time completed /4/. S/
Sample No.	MW-1903-20		
Duplicate		Time	
Equipment Blank		Time	
Pump	Parifump		
Purging Method	portable / dedicated pump	Diamete	r and Type of Casing _2^*
Pumping Start		Approximate Total Depth of	of Well Below MP (ft.) 20
Purge Rate (gal./min.)	- /	Measured Total Depth of	of Well Below MP (ft.) 21. 57 427 - 22.8
Pumping End	0.1 10.16 11 11min	Depth to	Water Below MP (ft.) 7. 90
r empired Ener	112		rozen) Below MP (ft.)
Pump Set Depth Bel	WIR (ft)		Feet of Water in Well 14. 94
[10] M. K. M. Mark, "And "Loop and the second statistical design of the second state of the second stat	Tubing (ft.) 3^{\prime}		Gallons per foot
	Tubing (ft.) 24°		Gallons in Well 2.54
That ony		Burge	
		Burge Water Dispesal	Water Volume (gal.) <u>~ 3</u>
Monument Condition	00-1	Purge Water Disposal	1C, discharge & 30' from well
Monument Condition	Jood		
Casing Condition	9000		
Wiring Condition	the second se		
(dedicated pumps)			
(dedicated pumps)			
Measuring Point (MP)	Top of Casing (TOC)	Monument type: Stick	/ Flushmount
measuring round (mr.).			& level / Tape measure
		Measurement method. Abd	a level 7 Tape measure
Top-of-casing to mon	ument (ft.) S >	Datalogg	er type n/a
Monument to ground s	urface (ft.) 2, 53	Datalogger :	
		Measured cable len	
Lock prese	nt and operational no lock		<u></u>
	legible on outside of well		
	f frost-jacking /10/	10	
E 19999999		~~~~~	
7	1. A. I.	Thurs	
Notes	NP-1 3.46	m_G. 200	3.52
STO DING	9.37	PW: 9.87	
VV =	1	NV1 /10/	
1			
	WELLO	ASING VOLUMES	

		WALLE OF	ASING VOL	JIVIES			
Diameter of Well [ID-inches]	CMT	11/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

how

10.00 00

7

Well No.

MW-1903-20

T ICIG	Sample Ob	Instrument /si / oservations Notes		Farameters	stabilized of	>3 well volumes purged
	I 0.2°C	± 0./ FIE	LD PARAMETERS [st	abilization c	riteria]	
Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
14:05	3.6	1.17	395.1	6.67	74.0	gruy opeque
14:08	3.5	0.74	404.9	6.84	-97.2	0. 1. 0
4:11	3.6	0.60	409.1	6.89	-107.9	
4:14	3.7	0,51	416.8	6.98	-117.0	4
7:17	3.7	0.41	418.0	7.00	-120.9	
14:20	3.7	0.37	419.7	7.02	-125.2	
4:23	3.6	0.34	422.4	7.03	-127.4	
4:26	sample					
(
				and the second second		

Laboratory Test America 1568

Analysis	Sample Containers	Preservatives	Dup	
E/ PEAS	2× HDPE		₽	
V provitor	1x125ml Anler	Hei		
VI GR DOC	1×125ml Ander	HCI		
Nor + Ca	1×125 n.L HOPE	HNC.	므	
<u> </u>			므	
<u> </u>			므	

hon

Owner/Client Location Sampling Personnel Weather Conditions	FAI FOAI - VTY Overcast	plume st		<u>ሮ</u> mp. (°F)	570	Tir	Date	102519 <u>6/17/21</u> <u>4w-1903</u> -20 <u>1300</u> 1445
Sample No Duplicate Equipment Blank	uw - 190	03-20		Time Time Time	1400			
Pump Purging Method Pumping Start Purge Rate (gal./min.) Pumping End Pump Set Depth Belov KuriTec Tu TruPoly Tu	v MP (ft.)	<u>dedicate</u> d pe	A uri t sil	Measure	e Total De d Total De Depth Depth to Ice P	pth of Well I pth of Well I th to Water I e (if frozen) I Feet of Ga G	ype of Casing Below MP (ft.) Below MP (ft.) Below MP (ft.) Below MP (ft.) Water in Well allons per foot allons in Well Volume (gal.)	2" pvC 20 21.45+1.37 6.69 • 16.13 0.17 2.7 2.7 23.3 g-11
Monument Condition Casing Condition	good							
Wiring Condition (dedicated pumps)	-/							
Measuring Point (MP)	Top of Casin	g (TOC)	Meas	Monume surement n	•••		/ Flushmount / Tape measu	re
Top-of-casing to monu Monument to ground su Lock present Well name le Evidence of f	rface (ft.)	side of well	one	Meas	Datalog	logger type Iger serial # e length (ft.)	n/a n/a n/a	
Notes							~	
		WE	ELL CASIN	IGVOLUI	/IES	7		<u> </u>
Diameter of Well [ID-inches]		CMT	1¼	//2	3	4	6	8
Gallons per lineal foot	(0.08	0.17	0.38	0.66	1.5	2.6
		TWP-1 1,25	I		·			Vell No. HW-1903-20

has

Field Parameter Instrument	SSI B	Circle one: Parameters stabilized or >3 well volumes purged
Sample Observations		
Notes		
	0.0	

	Temp. (°C)	Dissolved Oxygen (mg/L)	Conductivity (µS/cm)		ORP (mV)	MM Charles
Time	[± 3%]	[±10%]	[± 3%]	[± 0.1]	[± 10 mV]	Water Clarity (visual)
1332.	start			-	τ	
1336	5.2	3.40	428.1	7.42	-479.8	SP. feitbid
1339	5.2	1-81	¥438.6	7.44	-532.8	
1342	5.1	0.83	442.4	7.44	- 549.1	Ý
1345	5.0	0.31	441.0	7.46	- 553-3	
1348	5.0	0.14	443, 3	7.46	-559,2	
1351	4.89	0.12	443.1	7.46	-556.2	
1259	4.9	0.12	999.8	7.46	-359,6	Y
1357	4.8	0.11	441.1	7.46	-562.0	V
1400	Sample	/				
th	- 1 a					
÷.	<u>e</u>	0404862	6 cche	2 1 0.00	2 Q	CORD NOTION
B. C. C. V	2-21-18-9/14	CHERN STRUCTURE				
U		240				
						on the mail formal for the state
					1	
						99.2 merilino prim
						(ESIL) CONCOSCION

FIELD PARAMETERS [stabilization criteria]

Laboratory SGS/Eurofus Test America

Analysis	Sample Containers	Preservatives	Dup
DRO/RRO	neppolated	(1)	
GROIBTER	101.010.02 02.1 1.124 M		
TOCOBDE			
DOC		and we want	<u> </u>
Total Mg & Ca			
PFASX25			
	Analysis DEO/REO GEO/BTEX TOCODDE DOC DOC DOC DOC DOC DOC DOC DOC DOC		

MOD

Appendix C Analytical Results And QA/QC Summary

CONTENTS

- Quality Assurance/Quality Control (QA/QC) Summary
- Eurofins TestAmerica Laboratories, Sacramento (Eurofins TestAmerica), SGS North America, Anchorage (SGS) Analytical Reports and DEC Laboratory Data Review Checklists (LDRCs)
- EnviroFlux Background
- Darcy Velocity and PFAS Flux Results

ACRONYMS	
°C	degrees Celsius
DEC	Alaska Department of Environmental Conservation
Eurofins TestAmeric	ca Eurofins TestAmerica Laboratories, Sacramento
FB	field blank
IDA	isotope dilution analyte
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LDRC	Laboratory Data Review Checklist
LOD	limit of detection
LOQ	laboratory limit of quantitation
MB	method blank
MDL	method detection limit
MS	matrix spike
MSD	matrix spike duplicate
QA	quality assurance
QC	quality control
RL	reporting limit
RPD	relative percent difference

QUALITY ASSURANCE (QA) / QUALITY CONTROL (QC) SUMMARY

Quality Assurance/Quality Control (QA/QC) procedures assist in producing data of acceptable quality and reliability. We reviewed the analytical results for laboratory QC samples and conducted our own QA assessment for this project. We reviewed the chain-of-custody records and laboratory receipt forms to check custody was not breached, sample holding times were met, and the samples were properly handled from the point of collection through analysis by the laboratory. Our QA review procedures allowed us to document the accuracy and precision of the analytical data, as well as check the analyses were sufficiently sensitive to detect analytes at levels below regulatory standards.

Laboratory QC procedures included evaluating surrogate and/or isotope dilution analyte (IDA) recoveries, performing continuing calibration checks, and analyzing method blanks (MBs), laboratory control samples (LCSs), and matrix spikes (MSs) to assess accuracy and precision. LCS, LCS duplicate (LCSD), MS, and MS duplicates (MSD), and surrogate and/or IDA recovery analyses were performed to evaluate the accuracy of the analytical process. Analytical precision was assessed by comparing the results of duplicate analyses performed on duplicate-sample, LCS/LCSD, and MS/MSD pairs.

Field QC procedures included collecting field-duplicate samples. Samplers used single-use equipment to reduce the potential for sample cross-contamination.

The laboratory reports contain a case narrative and forms documenting sample-receipt conditions. Details regarding the results of our QA review are presented below. The laboratory reports and corresponding DEC LDRCs are presented in this appendix, in numerical order. During our review we applied a standardized set of flags indicating estimated data or analytical bias for data brought into question during the review.

Sample Handling

Samples collected by Shannon & Wilson were shipped to Eurofins TestAmerica in Sacramento, California or SGS in Fairbanks, Alaska as described in Section 2.6. The evaluation of proper sample handling procedures included verification of the following: correct chain-of-custody documentation, appropriate sample containers and preservatives, cooler temperatures maintained between 0 degrees Celsius (°C) and 6 °C, ice-free samples, and sample analyses within method-specified holding times. The samples were received with complete chain-of-custody information, in good condition, properly preserved, within the acceptable temperature range, and analyzed within method-specified holding times.

Analytical Sensitivity

The laboratory's method detection limit (MDL) is the lowest analyte concentration that can be measured. The laboratory's limit of quantitation (LOQ) is the lowest analyte concentration that can be routinely measured in the sampled matrix with confidence, or the point at which a concentration is considered quantitative. Sample matrix, instrument performance, sample dilutions, and other factors will impact the MDL and reporting limit (RL) for each analysis. The laboratory references the LOQ as their RL.

In cases where analytes were not detected at concentrations above their MDL, the analytical results are presented in our data-summary tables with reference to their RLs. For example, a sample that does not contain an analyte at a concentration greater than its MDL and has an RL of 2.0 ng/L would be tabulated as "<2.0 ng/L," where "<" indicates the analyte was not detected above the MDL. If the analyte is detected between the MDL and the RL, its concentration is considered an estimate; in our tables, this value is flagged with a 'J' and is applied by the laboratory. The laboratory RLs associated with this project are considered adequate for report preparation and data analysis.

Laboratory MBs were analyzed in association with samples collected for this project to check for contributions to the analytical results possibly attributable to laboratory-based contamination. Project samples are only affected by the MB detections if the sample has a reported detection within ten times the MB detection in the associated preparatory batch.

MBs were analyzed for each preparatory batch. The results are bolded as an exceedance in the analytical data table, where applicable. For a detailed discussion including MB detections that did not result in data qualification, please see the associated LDRCs. MB detections did not result in data qualification for samples analyzed as a part of this project with the following exceptions:

 Eurofins TestAmerica Work Order 320-57358 Rev1: PFBA and PFHxS were detected below the RL in the MB samples associated with this work order. PFBA and PFHxS are considered not detected in sample MW-1903-20 and were flagged B* at the LOQ in the analytical tables.

Accuracy

Accuracy refers to reporting the correct analyte concentration and is a comparison between the measured value and a known or expected value. Laboratory analytical accuracy may be assessed through the analyte recoveries from LCS/LCSD and/or MS/MSD analyses, and the recovery of analyte IDAs added to project samples. The LCS/LCSDs are spikes of known analyte concentrations added to a clean matrix; the MS/MSDs are spikes of known analyte concentrations added to project samples to address matrix interferences. IDAs are compounds that are similar to the analytes being evaluated by a given method, added prior to sample preparation and analysis, to evaluate matrix interferences and other inefficiencies of sample extraction.

The laboratories' LCS, LCSD, MS, MSD, and surrogate/IDA recovery failures did not require data qualification for samples analyzed as a part of this project. For a detailed discussion including recovery failures that did not result in data qualification, please see the associated LDRCs.

Precision

Field-duplicate samples were collected during September 2020 sample collection.

The relative percent difference (RPD; difference between the sample and its field-duplicate divided by the mean of the two was calculated to evaluate the precision of the data). An RPD was evaluated only if the results of the analyses for both the primary and field-duplicate sample were detected for a given analyte. Results of RPD calculations for each of these duplicate sample sets met the data quality objective of 30 percent for water samples, where calculable.

Laboratory analytical precision can also be assessed by comparing the results of duplicate analyses performed on LCS/LCSD, MS/MSD, and laboratory-duplicate samples, and evaluating the associated RPDs. The laboratory LCS/LSCD, MS/MSD, and laboratory-duplicate sample RPDs were within laboratory acceptance criteria.

Additional Quality Control Discrepancies

The concentration of perfluorohexanesulfonic acid (PFHxS) associated with Eurofins TestAmerica Work Order 320-55729-1 exceeded the instrument calibration range. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range. PFHxS for the following samples were flagged 'J*' in the analytical tables: MW-1903-20 and MW-1904-36. The peak did not saturate the instrument detector. The transition mass ratio for the following analytes was outside of the established ratio limits for certain samples. Laboratory analyst judgement was used to positively identify these analytes. The qualitative identification of these analytes has some degree of uncertainty; the following results have been flagged 'J' as estimated.

Eurofins TestAmerica Work Order 320-57358 Rev.1: PFOS for MW-1903-20 was flagged
 'J*' in the analytical tables.

Data Quality Summary

By working in general accordance with our proposed scope of services, we consider the samples we collected for this project to be representative of site conditions at the locations and times they were obtained. In general, the quality of the analytical data for this project does not appear to have been compromised by analytical irregularities and is adequate for the purposes of our assessment.

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks 2355 Hill Rd. Fairbanks, AK 99701 (907)479-0600

Report Number: **1199604**

Client Project: 11-4-06050 Plume Stop

Dear Kristen Freiburger,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins Project Manager Jennifer.Dawkins@sgs.com Date

Print Date: 08/15/2019 1:59:21PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks SGS Project: 1199604 Project Name/Site: 11-4-06050 Plume Stop

Refer to sample receipt form for information on sample condition.

* QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to the associated field samples.

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification, and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which ir All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content. integrated per SOP.

Print Date: 08/15/2019 1:59:23PM

Note:

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

	\$	Sample Summary	,	
Client Sample ID	Lab Sample ID	Collected	Received	Matrix
MW-19-02	1199604001	08/02/2019	08/06/2019	Water (Surface, Eff., Ground)
MW-19-01	1199604002	08/02/2019	08/06/2019	Water (Surface, Eff., Ground)
MW-19-02	1199604003	08/02/2019	08/06/2019	Water (Surface, Eff., Ground)
MW-19-01	1199604004	08/02/2019	08/06/2019	Water (Surface, Eff., Ground)
Trip Blank	1199604005	08/02/2019	08/06/2019	Water (Surface, Eff., Ground)
Method	Method Des	cription		
SM 5310B	Dissolved O	rganic Carbon		
AK102	DRO/RRO L	ow Volume Wate	r	
AK103	DRO/RRO L	ow Volume Wate	r	
AK101	Gasoline Ra	ange Organics (W)	
EP200.8	Metals in Dr	inking Water by IC	CP-MS DISSO	
EP200.8	Metals in Wa	ater by 200.8 ICP	MS	
SM 5310B	Total Organ	ic Carbon		
SW8260C	Volatile Orga	anic Compounds	(W)	

Print Date: 08/15/2019 1:59:25PM

SGS

	Detectable Results Summary		
Client Sample ID: MW-19-02			
Lab Sample ID: 1199604001	Parameter	Result	Units
Metals by ICP/MS	Calcium	71700	ug/L
	Iron	12100	ug/L
	Magnesium	17700	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.287J	mg/L
.	Residual Range Organics	0.176J	mg/L
Waters Department	Total Organic Carbon	4160	ug/L
Client Sample ID: MW-19-01			
Lab Sample ID: 1199604002	Parameter	Result	Units
Metals by ICP/MS	Calcium	90000	ug/L
	Iron	16800	ug/L
	Magnesium	23000	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.216J	mg/L
Waters Department	Total Organic Carbon	4740	ug/L
Client Sample ID: MW-19-02			
Lab Sample ID: 1199604003	Parameter	Result	Units
Dissolved Metals by ICP/MS	Iron	5360	ug/L
	Magnesium	17200	ug/L
Waters Department	Total Organic Carbon, Dissolved	4150	ug/L
Client Sample ID: MW-19-01			
Lab Sample ID: 1199604004	Parameter	Result	Units
Dissolved Metals by ICP/MS	Iron	14500	ug/L
	Magnesium	22900	ug/L
Waters Department	Total Organic Carbon, Dissolved	4530	ug/L
•			

Detectable Results Summary

Print Date: 08/15/2019 1:59:25PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

Results of MW-19-02

Client Sample ID: MW-19-02 Client Project ID: 11-4-06050 Plume S Lab Sample ID: 1199604001 Lab Project ID: 1199604	Collection Date: 08/02/19 13:37 Received Date: 08/06/19 10:55 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Metals by ICP/MS							
Parameter Calcium	<u>Result Qual</u> 71700	<u>LOQ/CL</u> 500	<u>DL</u> 150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 08/08/19 18:47
Iron Magnesium	12100 17700	250 50.0	78.0 15.0	ug/L ug/L	1 1		08/08/19 18:47 08/08/19 18:47
Batch Information Analytical Batch: MMS10585 Analytical Method: EP200.8 Analyst: DSH Analytical Date/Time: 08/08/19 18:47 Container ID: 1199604001-J		1	Prep Methoo Prep Date/T Prep Initial V	MXX32644	nL		

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

Member of SGS Group

Results of MW-19-02 Client Sample ID: MW-19-02 Client Project ID: 11-4-06050 Plume S Lab Sample ID: 1199604001	itop		Collection Da Received Da Matrix: Wate	te: 08/06/	19 10:55		
Lab Project ID: 1199604		Solids (%): Location:					
Results by Semivolatile Organic Fuels	5						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.287 J	<u>LOQ/CL</u> 0.577		<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 08/14/19 21:1
urrogates							
5a Androstane (surr)	71.8	50-150		%	1		08/14/19 21:1
Batch Information							
Analytical Batch: XFC15242 Analytical Method: AK102 Analyst: VDL Analytical Date/Time: 08/14/19 21:15 Container ID: 1199604001-G	Prep Batch: XXX42009 Prep Method: SW3520C Prep Date/Time: 08/14/19 09:57 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL						
Parameter Residual Range Organics	<u>Result Qual</u> 0.176 J	<u>LOQ/CL</u> 0.481	<u>DL</u> 0.144	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/14/19 21:
urrogates							
n-Triacontane-d62 (surr)	83.2	50-150		%	1		08/14/19 21:
Batch Information							
Analytical Batch: XFC15242 Analytical Method: AK103 Analyst: VDL Analytical Date/Time: 08/14/19 21:15 Container ID: 1199604001-G			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	l: SW35200 me: 08/14/1 /t./Vol.: 260	9 09:57		

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

Member of SGS Group

Results of MW-19-02								
Client Sample ID: MW-19-02 Client Project ID: 11-4-06050 Plume S Lab Sample ID: 1199604001 Lab Project ID: 1199604 Results by Volatile Fuels	Collection Date: 08/02/19 13:37 Received Date: 08/06/19 10:55 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:							
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/13/19 02:41	
Surrogates 4-Bromofluorobenzene (surr)	88.6	50-150		%	1		08/13/19 02:41	
Batch Information Analytical Batch: VFC14874 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/13/19 02:41 Container ID: 1199604001-A		F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract					

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

Results of MW-19-02

Results of MW-19-02							
Client Sample ID: MW-19-02 Client Project ID: 11-4-06050 Plume S Lab Sample ID: 1199604001 Lab Project ID: 1199604	itop	Collection Date: 08/02/19 13:37 Received Date: 08/06/19 10:55 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Volatile GC/MS							
<u>Parameter</u> Benzene	<u>Result Qual</u> 0.200 U	<u>LOQ/CL</u> 0.400	<u>DL</u> 0.120	<u>Units</u>	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 08/09/19 21:14
Ethylbenzene	0.200 U 0.500 U	0.400 1.00	0.120	ug/L ug/L	1		08/09/19 21:14 08/09/19 21:14
o-Xylene P & M -Xylene	0.500 U 1.00 U	1.00 2.00	0.310 0.620	ug/L ug/L	1 1		08/09/19 21:14 08/09/19 21:14
Toluene	0.500 U	1.00	0.310	ug/L	1		08/09/19 21:14
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/09/19 21:14
Surrogates 1,2-Dichloroethane-D4 (surr)	115	81-118		%	1		08/09/19 21:14
4-Bromofluorobenzene (surr)	105	85-114		%	1		08/09/19 21:14
Toluene-d8 (surr)	93	89-112		%	1		08/09/19 21:14
Batch Information							
Analytical Batch: VMS19286 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/09/19 21:14 Container ID: 1199604001-D			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	l: SW5030E me: 08/09/ [,] /t./Vol.: 5 m	19 06:00		

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

Results of MW-19-02							
Client Sample ID: MW-19-02 Client Project ID: 11-4-06050 Plume S Lab Sample ID: 1199604001 Lab Project ID: 1199604	R M S	Collection Date: 08/02/19 13:37 Received Date: 08/06/19 10:55 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Waters Department						Allowable	
Parameter Total Organic Carbon	<u>Result Qual</u> 4160	<u>LOQ/CL</u> 1000	<u>DL</u> 400	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 08/08/19 15:52
Batch Information Analytical Batch: WTC2942 Analytical Method: SM 5310B Analyst: BMZ Analytical Date/Time: 08/08/19 15:52 Container ID: 1199604001-I							

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

Results of MW-19-01

Client Sample ID: MW-19-01 Collection Date: 08/02/19 16:40 Received Date: 08/06/19 10:55 Client Project ID: 11-4-06050 Plume Stop Lab Sample ID: 1199604002 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1199604 Solids (%): Location: Results by Metals by ICP/MS Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> <u>Limits</u> Date Analyzed Calcium 90000 500 150 ug/L 1 08/08/19 18:50 Iron 16800 250 78.0 ug/L 1 08/08/19 18:50 Magnesium 23000 50.0 15.0 ug/L 1 08/08/19 18:50 **Batch Information** Analytical Batch: MMS10585 Prep Batch: MXX32644 Analytical Method: EP200.8 Prep Method: E200.2 Analyst: DSH Prep Date/Time: 08/08/19 13:28 Analytical Date/Time: 08/08/19 18:50 Prep Initial Wt./Vol.: 20 mL Container ID: 1199604002-J Prep Extract Vol: 50 mL

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

Client Sample ID: MW-19-01 Client Project ID: 11-4-06050 Plume Stop Lab Sample ID: 1199604002 Lab Project ID: 1199604		Collection Date: 08/02/19 16:40 Received Date: 08/06/19 10:55 Matrix: Water (Surface, Eff., Ground)						
Lab Project ID: 1199604		Solids (%): Location:						
Results by Semivolatile Organic Fuels	5							
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 0.216 J	<u>LOQ/CL</u> 0.566	<u>DL</u> 0.170	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 08/14/19 21:	
urrogates 5a Androstane (surr)	81.3	50-150		%	1		08/14/19 21::	
Batch Information Analytical Batch: XFC15242 Analytical Method: AK102 Analyst: VDL Analytical Date/Time: 08/14/19 21:25 Container ID: 1199604002-G			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	l: SW3520C me: 08/14/1 /t./Vol.: 265	9 09:57			
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 0.236 U	<u>LOQ/CL</u> 0.472	<u>DL</u> 0.142	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyze</u> 08/14/19 21:	
urrogates n-Triacontane-d62 (surr)	96.6	50-150		%	1		08/14/19 21:	
Batch Information								
Analytical Batch: XFC15242 Analytical Method: AK103 Analyst: VDL Analytical Date/Time: 08/14/19 21:25 Container ID: 1199604002-G			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	l: SW35200 me: 08/14/1 /t./Vol.: 265	9 09:57			

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

Results of MW-19-01							
Client Sample ID: MW-19-01 Client Project ID: 11-4-06050 Plume S Lab Sample ID: 1199604002 Lab Project ID: 1199604	Collection Date: 08/02/19 16:40 Received Date: 08/06/19 10:55 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/13/19 02:58
Surrogates 4-Bromofluorobenzene (surr)	91.9	50-150		%	1		08/13/19 02:58
Batch Information Analytical Batch: VFC14874 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/13/19 02:58 Container ID: 1199604002-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030E me: 08/12/ 't./Vol.: 5 m	19 06:00		

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

Results of MW-19-01

- Results of MW-19-01									
Client Sample ID: MW-19-01 Client Project ID: 11-4-06050 Plume S Lab Sample ID: 1199604002 Lab Project ID: 1199604	Stop	R M S	ollection Date: 08/02/19 16:40 eceived Date: 08/06/19 10:55 latrix: Water (Surface, Eff., Ground) olids (%): ocation:						
Results by Volatile GC/MS									
Parameter Benzene Ethylbenzene o-Xylene P & M -Xylene	<u>Result Qual</u> 0.200 U 0.500 U 0.500 U 1.00 U	LOQ/CL 0.400 1.00 1.00 2.00	<u>DL</u> 0.120 0.310 0.310 0.620	<u>Units</u> ug/L ug/L ug/L ug/L	<u>DF</u> 1 1 1	<u>Allowable</u> Limits	Date Analyzed 08/07/19 21:29 08/07/19 21:29 08/07/19 21:29 08/07/19 21:29		
Toluene	0.500 U	1.00	0.310	ug/L	1		08/07/19 21:29		
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/07/19 21:29		
Surrogates									
1,2-Dichloroethane-D4 (surr)	111	81-118		%	1		08/07/19 21:29		
4-Bromofluorobenzene (surr)	97.2	85-114		%	1		08/07/19 21:29		
Toluene-d8 (surr)	96.6	89-112		%	1		08/07/19 21:29		
Batch Information									
Analytical Batch: VMS19277 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/07/19 21:29 Container ID: 1199604002-D			Prep Batch: VXX34608 Prep Method: SW5030B Prep Date/Time: 08/07/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL						

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

Results of MW-19-01								
Client Sample ID: MW-19-01 Client Project ID: 11-4-06050 Plume S Lab Sample ID: 1199604002 Lab Project ID: 1199604 Results by Waters Department	R M S	Collection Date: 08/02/19 16:40 Received Date: 08/06/19 10:55 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Parameter Total Organic Carbon	<u>Result Qual</u> 4740	<u>LOQ/CL</u> 1000	<u>DL</u> 400	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 08/08/19 16:10	
Batch Information Analytical Batch: WTC2942 Analytical Method: SM 5310B Analyst: BMZ Analytical Date/Time: 08/08/19 16:10 Container ID: 1199604002-I								

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

Results of MW-19-02 Client Sample ID: MW-19-02 Collection Date: 08/02/19 13:37 Received Date: 08/06/19 10:55 Client Project ID: 11-4-06050 Plume Stop Lab Sample ID: 1199604003 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1199604 Solids (%): Location: Results by Dissolved Metals by ICP/MS Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Date Analyzed Limits Iron 5360 250 78.0 ug/L 1 08/08/19 18:53 Magnesium 17200 50.0 15.0 ug/L 1 08/08/19 18:53 **Batch Information** Analytical Batch: MMS10585 Prep Batch: MXX32644 Analytical Method: EP200.8 Prep Method: E200.2 Analyst: DSH Prep Date/Time: 08/08/19 13:28 Analytical Date/Time: 08/08/19 18:53 Prep Initial Wt./Vol.: 20 mL Container ID: 1199604003-B Prep Extract Vol: 50 mL

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

Results of MW-19-02									
Client Sample ID: MW-19-02			Collection Date: 08/02/19 13:37						
Client Project ID: 11-4-06050 Plume Stop			Received Date: 08/06/19 10:55						
Lab Sample ID: 1199604003			Matrix: Water (Surface, Eff., Ground)						
Lab Project ID: 1199604			Solids (%):						
Results by Waters Department			Location:						
Parameter	<u>Result Qual</u>	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u>	<u>Date Analyzed</u>		
Total Organic Carbon,Dissolved	4150	1000	400	ug/L	1	<u>Limits</u>	08/08/19 16:24		
Analytical Batch: WTC2942 Analytical Method: SM 5310B Analyst: BMZ Analytical Date/Time: 08/08/19 16:24 Container ID: 1199604003-A									

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

SGS	

Results of MW-19-01 Client Sample ID: MW-19-01 Collection Date: 08/02/19 16:40 Received Date: 08/06/19 10:55 Client Project ID: 11-4-06050 Plume Stop Lab Sample ID: 1199604004 Matrix: Water (Surface, Eff., Ground) Lab Project ID: 1199604 Solids (%): Location: Results by Dissolved Metals by ICP/MS Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> <u>Limits</u> Date Analyzed Iron 14500 250 78.0 ug/L 1 08/08/19 18:56 Magnesium 08/08/19 18:56 22900 50.0 15.0 ug/L 1 Batch Information Analytical Batch: MMS10585 Prep Batch: MXX32644 Analytical Method: EP200.8 Prep Method: E200.2 Analyst: DSH Prep Date/Time: 08/08/19 13:28 Analytical Date/Time: 08/08/19 18:56 Prep Initial Wt./Vol.: 20 mL Container ID: 1199604004-B Prep Extract Vol: 50 mL

Print Date: 08/15/2019 1:59:27PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 18 of 40

Results of MW-19-01							
Client Sample ID: MW-19-01 Client Project ID: 11-4-06050 Plume S Lab Sample ID: 1199604004 Lab Project ID: 1199604	R M S	Collection Date: 08/02/19 16:40 Received Date: 08/06/19 10:55 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Parameter Total Organic Carbon,Dissolved	<u>Result Qual</u> 4530	<u>LOQ/CL</u> 1000	<u>DL</u> 400	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/08/19 16:38
Batch Information Analytical Batch: WTC2942 Analytical Method: SM 5310B Analyst: BMZ Analytical Date/Time: 08/08/19 16:38 Container ID: 1199604004-A							

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

SGS										
Results of Trip Blank										
Client Sample ID: Trip Blank Client Project ID: 11-4-06050 Plume Lab Sample ID: 1199604005 Lab Project ID: 1199604	Collection Date: 08/02/19 13:37 Received Date: 08/06/19 10:55 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:									
Results by Volatile Fuels			_							
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyzed			
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		08/13/19 01:48			
Surrogates										
4-Bromofluorobenzene (surr)	81.1	50-150		%	1		08/13/19 01:48			
Batch Information										
Analytical Batch: VFC14874 Analytical Method: AK101 Analyst: NRB Analytical Date/Time: 08/13/19 01:48 Container ID: 1199604005-A		Prep Batch: VXX34632 Prep Method: SW5030B Prep Date/Time: 08/12/19 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL								

J flagging is activated

Results of Trip Blank

Results of Trip Blank								
Client Sample ID: Trip Blank Client Project ID: 11-4-06050 Plume S Lab Sample ID: 1199604005 Lab Project ID: 1199604	top	R M S	ollection Date: 08/02/19 13:37 eceived Date: 08/06/19 10:55 latrix: Water (Surface, Eff., Ground) olids (%): ocation:					
Results by Volatile GC/MS								
Parameter Benzene Ethylbenzene o-Xylene P & M -Xylene Toluene Xylenes (total)	Result Qual 0.200 U 0.500 U 0.500 U 1.00 U 0.500 U 1.50 U	LOQ/CL 0.400 1.00 1.00 2.00 1.00 3.00	<u>DL</u> 0.120 0.310 0.310 0.620 0.310 1.00	Units ug/L ug/L ug/L ug/L ug/L	<u>DF</u> 1 1 1 1 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/07/19 16:59 08/07/19 16:59 08/07/19 16:59 08/07/19 16:59 08/07/19 16:59 08/07/19 16:59	
Surrogates 1.2-Dichloroethane-D4 (surr)	110	81-118		%	1		08/07/19 16:59	
4-Bromofluorobenzene (surr)	98.1	85-114		%	1		08/07/19 16:59	
Toluene-d8 (surr)	96.7	89-112		%	1		08/07/19 16:59	
Batch Information Analytical Batch: VMS19277 Analytical Method: SW8260C Analyst: CMC Analytical Date/Time: 08/07/19 16:59 Container ID: 1199604005-D			Prep Batch: Prep Method Prep Date/Tii Prep Initial W Prep Extract	: SW5030B me: 08/07/1 /t./Vol.: 5 m	9 06:00			

h

Print Date: 08/15/2019 1:59:27PM

J flagging is activated

Blank Lab ID: 152432 QC for Samples:	1797638 [MXX/32644] 7 02, 1199604003, 1199604004	Wati D	k. Water (Suna	ace, Eff., Ground)		
Results by EP200.8						
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>		
Calcium	250U	500	150	ug/L		
Iron	125U	250	78.0	ug/L		
Magnesium	25.0U	50.0	15.0	ug/L		
atch Information						
Analytical Batch: MM	IS10585	Prep Ba	tch: MXX3264	1		
Analytical Method: E			ethod: E200.2			
Instrument: Perkin E	Imer NexIon P5	Prep Date/Time: 8/8/2019 1:28:59PM				
Analyst: DSH	9/9/2010 5·20·12DM	Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL				
Analytical Date/Time:	8/8/2019 5:30:12PM	Piep Ex	uact voi. 50 m			

Print Date: 08/15/2019 1:59:28PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1199604 [MXX32644] Blank Spike Lab ID: 1524335 Date Analyzed: 08/08/2019 17:33

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1'

1199604001, 1199604002, 1199604003, 1199604004

Results by EP200.8

	I	Blank Spike	e (ug/L)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	
Calcium	10000	10300	103	
Iron	5000	5290	106	
Magnesium	10000	10800	108	

Batch Information

Analytical Batch: MMS10585 Analytical Method: EP200.8 Instrument: Perkin Elmer NexIon P5 Analyst: DSH Prep Batch: MXX32644 Prep Method: E200.2 Prep Date/Time: 08/08/2019 13:28 Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 08/15/2019 1:59:29PM

Matrix Spike Summary

SG:

Original Sample ID: 1524337 MS Sample ID: 1524339 MS MSD Sample ID: Analysis Date: 08/08/2019 18:20 Analysis Date: 08/08/2019 18:23 Analysis Date: Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199604001, 1199604002, 1199604003, 1199604004

		Ma	trix Spike ((ug/L)	Spike	e Duplicate	e (ug/L)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	<u>RPD C</u>
Calcium	6080	10000	16400	103				70-130		
ron Aggnosium	125U 978	5000 10000	5410 11700	108 107				70-130 70-130		
<i>l</i> agnesium	970	10000	11700	107				70-130		
Batch Information										
Analytical Batch: MMS1058						/IXX32644				
Analytical Method: EP200.8							st for Metals		1S	
Instrument: Perkin Elmer No Analyst: DSH	exion Po					./Vol.: 20.	19 1:28:59 00mL	PIVI		
Analytical Date/Time: 8/8/20	019 6:23:51F	PM				/ol: 50.00				

SGS North America Inc.

Method Blank

SG:

Blank ID: MB for HBN 1797643 [VXX/34608] Blank Lab ID: 1524355 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199604002, 1199604005

Results by SW8260C

Parameter	Results	LOQ/CL	וח	Units
			<u>DL</u>	
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	110	81-118		%
4-Bromofluorobenzene (surr)	98.2	85-114		%
Toluene-d8 (surr)	96	89-112		%

Batch Information

Analytical Batch: VMS19277 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: CMC Analytical Date/Time: 8/7/2019 1:21:00PM Prep Batch: VXX34608 Prep Method: SW5030B Prep Date/Time: 8/7/2019 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 08/15/2019 1:59:32PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1199604 [VXX34608] Blank Spike Lab ID: 1524356 Date Analyzed: 08/07/2019 13:36 Spike Duplicate ID: LCSD for HBN 1199604 [VXX34608] Spike Duplicate Lab ID: 1524357 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199604002, 1199604005

Results by SW8260C

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	30	25.7	86	30	25.2	84	(79-120)	2.20	(< 20)
Ethylbenzene	30	25.9	86	30	25.2	84	(79-121)	2.70	(< 20)
o-Xylene	30	25.7	86	30	25.0	83	(78-122)	2.60	(< 20)
P & M -Xylene	60	52.0	87	60	50.3	84	(80-121)	3.40	(< 20)
Toluene	30	25.0	83	30	24.2	81	(80-121)	3.20	(< 20)
Xylenes (total)	90	77.7	86	90	75.3	84	(79-121)	3.10	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	105	105	30	105	105	(81-118)	0.13	
4-Bromofluorobenzene (surr)	30	99.3	99	30	99.7	100	(85-114)	0.40	
Toluene-d8 (surr)	30	99.3	99	30	99.2	99	(89-112)	0.07	

Batch Information

Analytical Batch: VMS19277 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: CMC Prep Batch: VXX34608 Prep Method: SW5030B Prep Date/Time: 08/07/2019 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 08/15/2019 1:59:33PM

Method Blank

Blank ID: MB for HBN 1797720 [VXX/34620] Blank Lab ID: 1524643

QC for Samples: 1199604001

Results by SW8260C

Parameter	Results	LOQ/CL	<u>DL</u>	Units
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	114	81-118		%
4-Bromofluorobenzene (surr)	105	85-114		%
Toluene-d8 (surr)	93.2	89-112		%

Batch Information

Analytical Batch: VMS19286 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: CMC Analytical Date/Time: 8/9/2019 10:58:00AM Prep Batch: VXX34620 Prep Method: SW5030B Prep Date/Time: 8/9/2019 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 08/15/2019 1:59:34PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1199604 [VXX34620] Blank Spike Lab ID: 1524644 Date Analyzed: 08/09/2019 11:13 Spike Duplicate ID: LCSD for HBN 1199604 [VXX34620] Spike Duplicate Lab ID: 1524645 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199604001

Results by SW8260C

,									
		Blank Spike	e (ug/L)	:	Spike Duplicate (ug/L)				
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	30	27.6	92	30	27.1	90	(79-120)	1.60	(< 20)
Ethylbenzene	30	26.4	88	30	26.4	88	(79-121)	0.34	(< 20)
o-Xylene	30	26.2	87	30	26.1	87	(78-122)	0.23	(< 20)
P & M -Xylene	60	53.6	89	60	54.9	92	(80-121)	2.40	(< 20)
Toluene	30	27.5	92	30	27.5	92	(80-121)	0.07	(< 20)
Xylenes (total)	90	79.8	89	90	81.0	90	(79-121)	1.50	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	107	107	30	107	107	(81-118)	0.72	
4-Bromofluorobenzene (surr)	30	106	106	30	105	105	(85-114)	0.60	
Toluene-d8 (surr)	30	92.3	92	30	91	91	(89-112)	1.50	

Batch Information

Analytical Batch: VMS19286 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: CMC Prep Batch: VXX34620 Prep Method: SW5030B Prep Date/Time: 08/09/2019 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 08/15/2019 1:59:36PM

lank ID: MB for HBN 17978 [.] lank Lab ID: 1525004	13 [VXX/34632]	Matrix	: Water (Surfac	ce, Eff., Ground)		
QC for Samples: 1199604001, 1199604002, 1199	9604005					
Results by AK101						
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>		
Gasoline Range Organics	0.0500U	0.100	0.0310	mg/L		
urrogates						
1-Bromofluorobenzene (surr)	82.4	50-150		%		
atch Information						
Analytical Batch: VFC14874		Prep Bat	tch: VXX34632			
Analytical Method: AK101			thod: SW5030B			
Instrument: Agilent 7890 PID	D/FID	Prep Date/Time: 8/12/2019 6:00:00AM				
Analyst: NRB Analytical Date/Time: 8/13/20	019 1:30:00AM	Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL				
Analytical Date/Time. 0/13/20	019 1.30.00AM	Fiep Exi	uau voi. SIIIL			

Print Date: 08/15/2019 1:59:37PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1199604 [VXX34632] Blank Spike Lab ID: 1525005 Date Analyzed: 08/13/2019 06:29 Spike Duplicate ID: LCSD for HBN 1199604 [VXX34632] Spike Duplicate Lab ID: 1525006 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199604001, 1199604002, 1199604005

Results by AK101									
	I	Blank Spike	e (mg/L)	S	pike Duplio	cate (mg/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.04	104	1.00	1.04	104	(60-120)	0.33	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	98.6	99	0.0500	91.6	92	(50-150)	7.40	
Batch Information Analytical Batch: VFC14874 Analytical Method: AK101 Instrument: Agilent 7890 PID/ Analyst: NRB	FID			Prep Prep Spik	e Init Wt./\	SW5030B e: 08/12/201 /ol.: 1.00 mg	9 06:00 g/L Extract \ g/L Extract V		

Print Date: 08/15/2019 1:59:38PM

- M	ethod Blank								
	ank ID: MB for HBN 179 ank Lab ID: 1524333	7639 [WTC/2942]	Matrix: Water (Surface, Eff., Ground)						
	C for Samples: 199604001, 1199604002, 1	199604003, 1199604004							
R	esults by SM 5310B								
	arameter otal Organic Carbon	<u>Results</u> 500U	<u>LOQ/CL</u> 1000	<u>DL</u> 400	<u>Units</u> ug/L				
Bat	tch Information								
	Analytical Batch: WTC29 Analytical Method: SM 53 Instrument: TOC Analyze Analyst: BMZ Analytical Date/Time: 8/8	310B 9r							

Print Date: 08/15/2019 1:59:39PM

2:01 1, 119960	[WTC2942 04002, 1199		Water (Surface, Eff., Ground)	
	04002, 1199		water (Surface, Ell., Ground)	
	Blank Spike	e (ug/L)		
<u>Spike</u> 75000	<u>Result</u> 68900	<u>Rec (%)</u> 92	<u>CL</u> (80-120)	

-

SGS	

Matrix Spike Summary										
Original Sample ID: 1194 MS Sample ID: 1524350 MSD Sample ID: 152435	MS				Analysis Analysis	Date: 08 Date: 08	3/08/2019 3/08/2019 3/08/2019 urface, Eff.	12:50 13:04	1	
QC for Samples: 119960	04001, 119960400	02, 119960	4003, 119	9604004						
Results by SM 5310B										
		Ма	trix Spike ((ug/L)	Spike	e Duplicate	e (ug/L)			
<u>Parameter</u> Total Organic Carbon	<u>Sample</u> 1370	<u>Spike</u> 10000	<u>Result</u> 10400	<u>Rec (%)</u> 91	<u>Spike</u> 10000	<u>Result</u> 10100	<u>Rec (%)</u> 87	<u>CL</u> 75-125	<u>RPD (%)</u> 3.20	<u>RPD CL</u> (< 25)
Batch Information										
Analytical Batch: WTC29 Analytical Method: SM 5 Instrument: TOC Analyze Analyst: BMZ Analytical Date/Time: 8/8	310B er	PM								
Print Date: 08/15/2019 1:59:42P				chorage A						

SGS North America Inc.

esults by AK102 arameter Resul iesel Range Organics 0.247 progates	<u>ts</u>	1.00/01			
irrogates	J	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	
a Androstane (surr) 88.3		60-120		%	
tch Information Analytical Batch: XFC15242 Analytical Method: AK102 Instrument: Agilent 7890B F Analyst: VDL Analytical Date/Time: 8/14/2019 7:20	5:00PM	Prep Me Prep Da Prep Init	tch: XXX42009 thod: SW3520C te/Time: 8/14/20 ial Wt./Vol.: 250 ract Vol: 1 mL)19 9:57:21AM	

Print Date: 08/15/2019 1:59:42PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1199604 [XXX42009] Blank Spike Lab ID: 1525244 Date Analyzed: 08/14/2019 19:36 Spike Duplicate ID: LCSD for HBN 1199604 [XXX42009] Spike Duplicate Lab ID: 1525245 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199604001, 1199604002

Results by AK102			_						
		Blank Spike	(mg/L) Spike Duplicate (mg/L)						
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	19.0	95	20	17.8	89	(75-125)	6.60	(< 20)
Surrogates									
5a Androstane (surr)	0.4	86.9	87	0.4	85.4	85	(60-120)	1.70	
Batch Information Analytical Batch: XFC15242 Analytical Method: AK102 Instrument: Agilent 7890B F Analyst: VDL				Pre Pre Spil	, ke Init Wt./\	SW3520C e: 08/14/20 1 /ol.: 20 mg/l	9 09:57 L Extract Vo		

Print Date: 08/15/2019 1:59:43PM

1199604001, 1199604002	Matrix: Water (Surface, Eff., Ground)					
Results by AK103						
Parameter Residual Range Organics	<u>Results</u> 0.250U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> mg/L		
Surrogates						
n-Triacontane-d62 (surr)	103	60-120		%		
Batch Information						
Analytical Batch: XFC15242 Analytical Method: AK103 Instrument: Agilent 7890B F Analyst: VDL Analytical Date/Time: 8/14/2	:	Prep Me Prep Da Prep Init	tch: XXX42009 thod: SW35200 te/Time: 8/14/20 ial Wt./Vol.: 250 rract Vol: 1 mL	019 9:57:21AM		

Print Date: 08/15/2019 1:59:45PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1199604 [XXX42009] Blank Spike Lab ID: 1525244 Date Analyzed: 08/14/2019 19:36 Spike Duplicate ID: LCSD for HBN 1199604 [XXX42009] Spike Duplicate Lab ID: 1525245 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1199604001, 1199604002

Results by AK103			_						
		Blank Spike	e (mg/L)	ng/L) Spike Duplicate (mg/L)					
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Residual Range Organics	20	16.7	84	20	16.0	80	(60-120)	4.60	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	92.4	92	0.4	92.9	93	(60-120)	0.56	
Batch Information									
Analytical Batch: XFC15242				Pre	p Batch: X	XX42009			
Analytical Method: AK103			Prep Method: SW3520C						
Instrument: Agilent 7890B F			Prep Date/Time: 08/14/2019 09:57						
Analyst: VDL				Spi	ke Init Wt./\	/ol.: 20 mg/l	L Extract Vo	ol: 1 mL	
				Dup	e Init Wt./V	/ol.: 20 mg/l	Extract Vol	: 1 mL	

Print Date: 08/15/2019 1:59:46PM

1199604	CHAI Y RECORD La Att Analytical Methods (include preserve	Quote No: Quote No: Ish J-Flags: J-Flags: Yes N Yes Date Control Lab No. Time Sampled Control Lab No. Time	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Project Information Sample Receipt Reliquished By: 2. Reliquished By: 3. Numer[]_H_MGS0 Total No. of Containers: Total No. of Containers: Total No. of Containers: Total No. of Containers: Reliquished By: 3. Numer[]_H_MGS0 Total No. of Containers: Reliquished By: 3. Numer[]_H_MGS0 Exerved Cood Cond./Get Time: HILD Signature: Time: HILD Signature:
	CILL SHANNON & WILSON, INC. 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600 www.shannonwiison.com	urn Around Ti Vormal Directif	MW-19-01 MW-19-01 M F	Project Information Number:

-Page 00 of 40-

No. 36075

e-Sampl <u>e Receipt Form FBK</u>								
SGS	SGS Workorder #:	1	1996	04	199604			
R	eview Criteria	Condition (Yes,	No, N/A	Exce	ptions Not	ed below		
Chain of Custody / Temperature Requirements Yes Exemption permitted if sampler hand carries/delivers.								
	Were Custody Seals intact? Note # & I	location N/A						
COC accompanied samples? Yes								
DOD: Were	samples received in COC corresponding c							
	**Exemption permitted if							
Tempera	ature blank compliant* (i.e., 0-6 °C afte	er CF)? Yes	Cooler ID:	1	@	4.6 °C Therm. ID: D23		
lf	- 4		Cooler ID:		@	°C Therm. ID:		
If samples received without documented instead & "COOLER		Cooler ID:		@	°C Therm. ID:			
be	noted if neither is available.		Cooler ID:		@	°C Therm. ID:		
*/f >	6°C, were samples collected <8 hours	0002						
11 >	6 C, were samples collected <8 hours							
	If <0°C, were sample containers ice	free?						
Note: Identify containers received at non-compliant temperature .								
Use form FS-0029 if more space is needed.								
	Documentation / Sample Condition Re		Note: Refer	to form F-083 "Sa	ample Guide" f	for specific holding times.		
-	DC ** (i.e., sample IDs, dates/times colle							
	iffer <1hr, record details & login per CC containers differs from COC, SGS will default to C							
•	good condition (no leaks/cracks/breal							
Were samples in								
	clear? (i.e., method is specified for an							
with m	ultiple option for analysis (Ex: BTEX, N	Vletals)						
Were Trip Blanks	s (i.e., VOAs, LL-Hg) in cooler with sar	nples? Yes					_	
	als free of headspace (i.e., bubbles ≤ 6							
Were a	Il soil VOAs field extracted with MeOH	+BFB? N/A						
For Rush/Short	Hold Time, was RUSH/Short HT emai	l sent? N/A						
Note to CI	ient: Any "No", answer above indicates nor	n-compliance	with standar	d procedures and	may impact da	ata quality.		
	Additiona	l notes (if a	pplicable)	:				
		20			1120			
SGS Profi	le # 3471	28		54,	128			

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	Preservative	<u>Container</u> Condition
1199604001-A	HCL to pH < 2	ОК			
1199604001-B	HCL to pH < 2	ОК			
1199604001-C	HCL to pH < 2	ОК			
1199604001-D	HCL to pH < 2	ОК			
1199604001-E	HCL to pH < 2	ОК			
1199604001-F	HCL to pH < 2	ОК			
1199604001-G	HCL to pH < 2	ОК			
1199604001-H	HCL to $pH < 2$	ОК			
1199604001-I	HCL to $pH < 2$	ОК			
1199604001-J	HNO3 to pH < 2 $$	ОК			
1199604002-A	HCL to pH < 2	ОК			
1199604002-B	HCL to $pH < 2$	ОК			
1199604002-C	HCL to $pH < 2$	ОК			
1199604002-D	HCL to $pH < 2$	ОК			
1199604002-E	HCL to $pH < 2$	ОК			
1199604002-F	HCL to $pH < 2$	ОК			
1199604002-G	HCL to $pH < 2$	ОК			
1199604002-H	HCL to $pH < 2$	ОК			
1199604002-I	HCL to $pH < 2$	ОК			
1199604002-J	HNO3 to pH < 2	ОК			
1199604003-A	HCL to $pH < 2$	ОК			
1199604003-B	HNO3 to pH < 2	ОК			
1199604004-A	HCL to $pH < 2$	OK			
1199604004-B	HNO3 to pH < 2	ОК			
1199604005-A	HCL to $pH < 2$	ОК			
1199604005-B	HCL to $pH < 2$	ОК			
1199604005-C	HCL to $pH < 2$	ОК			
1199604005-D	HCL to $pH < 2$	ОК			
1199604005-E	HCL to $pH < 2$	ОК			
1199604005-F	HCL to $pH < 2$	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

Laboratory Data Review Checklist

Completed By:

Kristen Freiburger

Title:

Associate

Date:

August 19, 2019

CS Report Name:

Fairbanks International Airport (FAI)

Report Date:

August 15, 2019

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

SGS North America Inc.

Laboratory Report Number:

1199604

ADEC File Number:

100.38.277

Hazard Identification Number:

26816

1199604

1. Laboratory

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?

			• Yes	O No	Comments:
		b.			another "network" laboratory or sub-contracted to an atory performing the analyses ADEC CS approved?
			O Yes	No	Comments:
	A	naly	ses were	performed by SGS in Anc	horage, AK.
2.	Chai	n of	Custody	<u>(CoC)</u>	
	a.	Co	C inform	ation completed, signed, a	and dated (including released/received by)?
			• Yes	O No	Comments:
	b.	Co	orrect Ana	lyses requested?	
			Yes	O No	Comments:
3.	Labo	orato	ry Sampl	e Receipt Documentation	
	a.	Sa	mple/coo	ler temperature documente	ed and within range at receipt (0° to 6° C)?
			• Yes	O No	Comments:
	b.			servation acceptable – acid lorinated Solvents, etc.)?	lified waters, Methanol preserved VOC soil (GRO, BTEX,
			• Yes	O No	Comments:
		C			
	c.	Sa	-		en, leaking (Methanol), zero headspace (VOC vials)?
			Yes	🔿 No	Comments:

The sample receipt form notes that the samples arrived at the laboratory in good condition.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

• Yes • No Comments:

There were no discrepancies noted by the laboratory in the sample receipt documentation.

e. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected.

4. Case Narrative

a. Present and understandable?

b. Discrepancies, errors, or QC failures identified by the lab?

• Yes • No Comments:

There were no discrepancies, errors or QC failures noted in the case narrative.

c. Were all corrective actions documented?

🔿 Yes 🛛 💿 No

Comments:

No corrective actions were documented in the case narrative.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The case narrative does not note an effect on data quality.

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

Yes O No Comments:
b. All applicable holding times met?
Yes O No Comments:

c. All soils reported on a dry weight basis?

○ Yes ^{(©} No Comments:

N/A; soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

• Yes • No Comments:

The LOD was used for this report. LODs were below the ADEC regulatory limits, where applicable.

e. Data quality or usability affected?

○ Yes ● No Comments:

The data quality and/or usability are not affected.

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

• Yes • No

Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

• Yes • No Comments:

Yes; however, DRO was detected in the method blank below the LOQ at an estimated concentration of 0.247J mg/L.

iii. If above LOQ, what samples are affected?

Comments:

Both project samples have concentrations within 5 times the method blank concentration. The project sample results are affected, each sample is flagged "UB" at the LOQ.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

○ Yes ⊙ No Comments:

See above.

v. Data quality or usability affected?

Comments:

Yes; see above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
 - Yes No Comments:

LCS/LCSD or LCS/MS/MSD samples were analyzed for organic analyses associated with this report.

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
- Yes ⊙ No Comments:

LCS and MS samples were analyzed for metals associated with this report. We are unable to assess the analytical precision of the metals analyses.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

• Yes • No

Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

• Yes • No Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

None; analytical accuracy and precision were demonstrated to be within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Comments:

🔿 Yes 🛛 💿 No

Qualification of the data was not required; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability are not affected.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?

• Yes O No Comments:

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

🔿 Yes 💿 No

N/A; see above.

iv. Data quality or usability affected?

Comments:

Comments:

The data quality and usability are not affected; see above.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - One trip blank reported per matrix, analysis and for each cooler containing volatile samples?
 (If not, enter explanation below.)
 - Yes No Co
 - Comments:
 - ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
 - Yes O No Comments:

One cooler was used to transport the project samples.

iii. All results less than LOQ?

• Yes • No Comments:

iv. If above LOQ, what samples are affected?

Comments:

N/A; see above.

v. Data quality or usability affected?

Comments:

The data quality and/or usability are not affected; see above.

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

• Yes • No Comments:

ii. Submitted blind to lab?

○ Yes ⊙ No Comments:

A field-duplicate sample was not collected for this project.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1-R_2)/((R_1+R_2)/2)$ x 100

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

• Yes O No

Comments:

N/A; a field-duplicate sample was not submitted in this work order.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

The data quality and/or usability are not affected; see above

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

○ Yes ● No ○ Not Applicable

Equipment blanks were not submitted for this project.

- i. All results less than LOQ?
- Yes No Comments:

N/A; an equipment-blank sample was not collected.

ii. If above LOQ, what samples are affected?

Comments:

N/A; an equipment-blank sample was not collected.

iii. Data quality or usability affected?

Comments:

Data quality and/or usability were not affected.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

🔿 Yes 🛛 💿 No

Comments:

There were no additional flags/qualifiers required for this work order.

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-52978-1

Client Project/Site: PlumeStop

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Authorized for release by: 8/19/2019 3:19:28 PM

David Alltucker, Project Manager I (916)374-4383 david.alltucker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	8
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
-	19

Definitions/Glossary

5

Qualifiers

Qualifier	S	3
LCMS		
Qualifier	Qualifier Description	4
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 320-52978-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-52978-1

Receipt

The samples were received on 8/6/2019 10:25 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.2° C.

LCMS

Method(s) 537 (modified): Results for samples MW-19-02 (320-52978-1) and MW-19-01 (320-52978-2) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-313706

Method(s) 3535: The following samples are light orange and contain sediment at the bottom of the bottle prior to extraction: MW-19-02 (320-52978-1) and MW-19-01 (320-52978-2)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: MW-19-02

5

Lab Sample ID: 320-52978-1

Lab Sample ID: 320-52978-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	23		18	3.2	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	22		18	4.4	ng/L	10	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	150		18	5.3	ng/L	10	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	29		18	2.3	ng/L	10	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	30		18	7.7	ng/L	10	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	56		18	1.8	ng/L	10	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	570	В	18	1.5	ng/L	10	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	15	J	18	4.9	ng/L	10	537 (modified)	Total/NA

Client Sample ID: MW-19-01

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	24		18	3.1	ng/L	10	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	55		18	4.3	ng/L	10	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	200		18	5.1	ng/L	10	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	24		18	2.2	ng/L	10	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	240		18	7.5	ng/L	10	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	100		18	1.8	ng/L	10	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	530	В	18	1.5	ng/L	10	537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	11	J	18	1.7	ng/L	10	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	270		18	4.8	ng/L	10	537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: MW-19-02 Date Collected: 08/02/19 13:37 Date Received: 08/06/19 10:25

Lab Sample ID: 320-52978-1 Matrix: Water

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	23		18		ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluoropentanoic acid (PFPeA)	22		18	4.4	ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluorohexanoic acid (PFHxA)	150		18		ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluoroheptanoic acid (PFHpA)	29		18	2.3	ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluorooctanoic acid (PFOA)	30		18	7.7	ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluorononanoic acid (PFNA)	ND		18	2.4	ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluorodecanoic acid (PFDA)	ND		18	2.8	ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluoroundecanoic acid (PFUnA)	ND		18	10	ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluorododecanoic acid (PFDoA)	ND		18	5.0	ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluorotridecanoic acid (PFTriA)	ND		18	12	ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluorotetradecanoic acid (PFTeA)	ND		18	2.6	ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluorobutanesulfonic acid (PFBS)	56		18	1.8	ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluorohexanesulfonic acid (PFHxS)	570	В	18	1.5	ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluoroheptanesulfonic Acid PFHpS)	ND		18		ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluorooctanesulfonic acid PFOS)	15	J	18		ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluorodecanesulfonic acid (PFDS)	ND		18	2.9	ng/L		08/09/19 05:35	08/15/19 01:57	10
Perfluorooctanesulfonamide (FOSA)	ND		18	3.2	ng/L		08/09/19 05:35	08/15/19 01:57	10
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		180	28	ng/L		08/09/19 05:35	08/15/19 01:57	10
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		180		ng/L		08/09/19 05:35	08/15/19 01:57	10
6:2 FTS	ND		180	18	ng/L		08/09/19 05:35	08/15/19 01:57	10
3:2 FTS	ND		180	18	ng/L		08/09/19 05:35	08/15/19 01:57	10
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	82		25 - 150				08/09/19 05:35	08/15/19 01:57	10
13C5 PFPeA	89		25 - 150				08/09/19 05:35	08/15/19 01:57	10
13C2 PFHxA	88		25 - 150				08/09/19 05:35	08/15/19 01:57	10
13C4 PFHpA	89		25 - 150				08/09/19 05:35	08/15/19 01:57	10
I3C4 PFOA	91		25 - 150				08/09/19 05:35	08/15/19 01:57	10
I3C5 PFNA	94		25 - 150				08/09/19 05:35	08/15/19 01:57	10
13C2 PFDA	90		25 - 150				08/09/19 05:35	08/15/19 01:57	10
I3C2 PFUnA	90		25 - 150				08/09/19 05:35	08/15/19 01:57	10
13C2 PFDoA	86		25 - 150				08/09/19 05:35	08/15/19 01:57	10
I3C2 PFTeDA	79		25 - 150					08/15/19 01:57	10
3C3 PFBS	94		25 - 150					08/15/19 01:57	10
1802 PFHxS	102		25 - 150					08/15/19 01:57	10
I3C4 PFOS	88		25 - 150					08/15/19 01:57	10
ISC8 FOSA	90		25 - 150					08/15/19 01:57	10
13-NMeFOSAA	94		25 - 150					08/15/19 01:57	10
15-NEtFOSAA	99 99		25 - 150					08/15/19 01:57	10
M2-6:2 FTS	120		25 - 150 25 - 150					08/15/19 01:57	10
	120								,0

Client Sample ID: MW-19-01 Date Collected: 08/02/19 16:40 Date Received: 08/06/19 10:25

Lab Sample ID: 320-52978-2 Matrix: Water

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	24		18		ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluoropentanoic acid (PFPeA)	55		18	4.3	ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluorohexanoic acid (PFHxA)	200		18	5.1	ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluoroheptanoic acid (PFHpA)	24		18	2.2	ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluorooctanoic acid (PFOA)	240		18	7.5	ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluorononanoic acid (PFNA)	ND		18	2.4	ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluorodecanoic acid (PFDA)	ND		18	2.7	ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluoroundecanoic acid (PFUnA)	ND		18	9.7	ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluorododecanoic acid (PFDoA)	ND		18	4.8	ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluorotridecanoic acid (PFTriA)	ND		18	11	ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluorotetradecanoic acid (PFTeA)	ND		18	2.6	ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluorobutanesulfonic acid (PFBS)	100		18	1.8	ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluorohexanesulfonic acid (PFHxS)	530	В	18	1.5	ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluoroheptanesulfonic Acid (PFHpS)	11	J	18		ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluorooctanesulfonic acid (PFOS)	270		18		ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluorodecanesulfonic acid (PFDS)	ND		18		ng/L		08/09/19 05:35	08/15/19 02:05	10
Perfluorooctanesulfonamide (FOSA)	ND		18	3.1	ng/L		08/09/19 05:35	08/15/19 02:05	10
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		180		ng/L		08/09/19 05:35	08/15/19 02:05	10
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		180		ng/L			08/15/19 02:05	10
6:2 FTS	ND		180		ng/L		08/09/19 05:35	08/15/19 02:05	10
8:2 FTS	ND		180	18	ng/L		08/09/19 05:35	08/15/19 02:05	10
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	65		25 - 150				08/09/19 05:35	08/15/19 02:05	10
13C5 PFPeA	69		25 - 150				08/09/19 05:35	08/15/19 02:05	10
13C2 PFHxA	69		25 - 150				08/09/19 05:35	08/15/19 02:05	10
13C4 PFHpA	70		25 - 150				08/09/19 05:35	08/15/19 02:05	10
13C4 PFOA	71		25 - 150				08/09/19 05:35	08/15/19 02:05	10
13C5 PFNA	68		25 - 150				08/09/19 05:35	08/15/19 02:05	10
13C2 PFDA	67		25 - 150				08/09/19 05:35	08/15/19 02:05	10
13C2 PFUnA	67		25 - 150				08/09/19 05:35	08/15/19 02:05	10
13C2 PFDoA	70		25 - 150				08/09/19 05:35	08/15/19 02:05	10
13C2 PFTeDA	63		25 - 150				08/09/19 05:35	08/15/19 02:05	10
13C3 PFBS	68		25 - 150				08/09/19 05:35	08/15/19 02:05	10
1802 PFHxS	79		25 - 150					08/15/19 02:05	10
13C4 PFOS	70		25 - 150					08/15/19 02:05	10
13C8 FOSA	69		25 - 150					08/15/19 02:05	10
d3-NMeFOSAA	70		25 - 150					08/15/19 02:05	10
d5-NEtFOSAA	69		25 - 150					08/15/19 02:05	10
			20-100						,0
M2-6:2 FTS	86		25 - 150				08/09/19 05:35	08/15/19 02:05	10

M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances Matrix: Water

Prep Type: Total/NA

5

-			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
320-52978-1	MW-19-02		89	88	89	91	94	90	90
320-52978-2	MW-19-01	65	69	69	70	71	68	67	67
LCS 320-313706/2-A	Lab Control Sample	86	88	86	88	87	87	84	85
LCSD 320-313706/3-A	Lab Control Sample Dup	71	73	76	75	76	75	73	71
MB 320-313706/1-A	Method Blank	64	65	64	66	67	64	63	63
			Porc	ent Isotope	Dilution Pa		contanco I	imite)	
		PFDoA	PFTDA	3C3-PFB		PFOS	PFOSA		-NEtFOS/
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
320-52978-1	MW-19-02	<u>(23-130)</u> 86	79	94	102	88	90	94	99
320-52978-2	MW-19-02 MW-19-01	70	63	68	79	70	69	34 70	69
LCS 320-313706/2-A	Lab Control Sample	84	80	86	99	87	84	83	80
LCSD 320-313706/3-A	Lab Control Sample Dup	72	67	76	86	73	69	69	69
MB 320-313706/1-A	Method Blank	63	58	70 65	00 75	73 64	69 62	59	60
WID 320-313700/1-A		03							00
				ent Isotope	Dilution Re	ecovery (Ac	ceptance L	imits)	
		M262FTS							
Lab Sample ID	Client Sample ID	(25-150)	(25-150)						
320-52978-1	MW-19-02	120	100						
320-52978-2	MW-19-01	86	74						
LCS 320-313706/2-A	Lab Control Sample	107	98						
LCSD 320-313706/3-A	Lab Control Sample Dup	88	85						
MB 320-313706/1-A	Method Blank	80	73						
Surrogate Legend									
PFBA = 13C4 PFBA									
PFPeA = 13C5 PFPeA									
PFHxA = 13C2 PFHxA									
PFHpA = 13C4 PFHpA									
PFOA = 13C4 PFOA									
PFNA = 13C5 PFNA									
PFDA = 13C2 PFDA									
PFUnA = 13C2 PFUnA									
PFDoA = 13C2 PFDoA									
PFTDA = 13C2 PFTeDA									
13C3-PFBS = 13C3 PFB	S								
PFHxS = 18O2 PFHxS									
PFOS = 13C4 PFOS									
PFOSA = 13C8 FOSA									
d3-NMeFOSAA = d3-NM	eFOSAA								

Prep Type: Total/NA

Client Sample ID: Method Blank

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-313706/1-A Matrix: Water Analysis Batch: 315245

Analysis Balch. 515245	MB	МВ						Ртер Басси.	. 313700		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	ł	
Perfluorobutanoic acid (PFBA)	ND		2.0	0.35	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		08/09/19 05:35	08/14/19 23:41	1	2	
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluorotetradecanoic acid (PFTeA)	0.300	J	2.0	0.29	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluorohexanesulfonic acid (PFHxS)	0.276	J	2.0	0.17	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.19	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		08/09/19 05:35	08/14/19 23:41	1		
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32	ng/L		08/09/19 05:35	08/14/19 23:41	1	2	
Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35	ng/L		08/09/19 05:35	08/14/19 23:41	1		
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20	3.1	ng/L		08/09/19 05:35	08/14/19 23:41	1		
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20	1.9	ng/L		08/09/19 05:35	08/14/19 23:41	1		
6:2 FTS	ND		20	2.0	ng/L		08/09/19 05:35	08/14/19 23:41	1		
8:2 FTS	ND		20	2.0	ng/L		08/09/19 05:35	08/14/19 23:41	1		
	MB	MB									
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
13C4 PFBA	64		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
13C5 PFPeA	65		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
13C2 PFHxA	64		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
13C4 PFHpA	66		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
13C4 PFOA	67		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
13C5 PFNA	64		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
13C2 PFDA	63		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
13C2 PFUnA	63		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
13C2 PFDoA	63		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
13C2 PFTeDA	58		25 - 150					08/14/19 23:41	1		
13C3 PFBS	65		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
18O2 PFHxS	75		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
13C4 PFOS	64		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
13C8 FOSA	62		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
d3-NMeFOSAA	59		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
d5-NEtFOSAA	60		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
M2-6:2 FTS	80		25 - 150				08/09/19 05:35	08/14/19 23:41	1		
M2-8:2 FTS	73		25 - 150				08/09/19 05:35	08/14/19 23:41	1		

5

8 9

Client Sample ID: Lab Control Sample

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample	ID: LCS 32	0-313706/2-A

Matrix: Water									Prep Type: Total/NA
Analysis Batch: 315245									Prep Batch: 313706
Analysia			Spike Added		LCS Qualifier	Unit		%Rec	%Rec. Limits
Analyte Perfluorobutanoic acid (PFBA)			40.0	40.9	Quaimer	ng/L	D	102	70 - 130
Perfluoropentanoic acid (PFPeA)			40.0	40.9 39.8		ng/L		102	66 - 126
Perfluorohexanoic acid (PFHxA)			40.0	40.2		-		100	66 - 126
						ng/L			
Perfluoroheptanoic acid (PFHpA)			40.0	39.3		ng/L		98	66 - 126 64 - 124
Perfluorooctanoic acid (PFOA)			40.0	39.6		ng/L		99	64 - 124
Perfluorononanoic acid (PFNA)			40.0	39.5		ng/L		99	68 - 128
Perfluorodecanoic acid (PFDA)			40.0	38.9		ng/L		97	69 - 129
Perfluoroundecanoic acid			40.0	36.4		ng/L		91	60 - 120
(PFUnA)			40.0	40.0		ng/L		100	71 - 131
Perfluorododecanoic acid (PFDoA)			40.0	40.0		ng/L		100	71-101
Perfluorotridecanoic acid			40.0	39.0		ng/L		97	72 - 132
(PFTriA)						5			
Perfluorotetradecanoic acid			40.0	38.7		ng/L		97	68 - 128
(PFTeA)									
Perfluorobutanesulfonic acid			35.4	36.1		ng/L		102	73 - 133
(PFBS)									
Perfluorohexanesulfonic acid			36.4	31.4		ng/L		86	63 - 123
(PFHxS)			38.1	38.9		ng/L		102	68 - 128
Perfluoroheptanesulfonic Acid (PFHpS)			30.1	30.9		ng/L		102	00 - 120
Perfluorooctanesulfonic acid			37.1	34.2		ng/L		92	67 - 127
(PFOS)									
Perfluorodecanesulfonic acid			38.6	35.6		ng/L		92	68 - 128
(PFDS)									
Perfluorooctanesulfonamide			40.0	39.3		ng/L		98	70 - 130
(FOSA)			10.0						07. 407
N-methylperfluorooctanesulfona			40.0	36.3		ng/L		91	67 - 127
midoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonami			40.0	37.5		ng/L		94	65 - 125
doacetic acid (NEtFOSAA)			40.0	57.5		ng/L		54	03-123
6:2 FTS			37.9	37.7		ng/L		99	66 - 126
8:2 FTS			38.3	37.6		ng/L		98	67 - 127
	LCS	LCS				5			
Isotope Dilution	%Recovery		Limits						
13C4 PFBA	86		25 - 150						
13C5 PFPeA	88		25 - 150						
13C2 PFHxA	86		25 - 150						
13C4 PFHpA	88		25 - 150						
13C4 PFOA	87		25 - 150 25 - 150						
13C5 PFNA	87		25 - 150 25 - 150						
13C2 PFDA			25 - 150 25 - 150						
13C2 PFDA 13C2 PFUnA	84		25 - 150 25 - 150						
	85								
13C2 PFDoA	84		25 - 150 25 - 150						
13C2 PFTeDA	80		25 - 150						
13C3 PFBS	86		25 - 150						
1802 PFHxS	99		25 - 150						
13C4 PFOS	87		25 - 150						
13C8 FOSA	84		25 - 150						
d3-NMeFOSAA	83		25 - 150						
d5-NEtFOSAA	80		25 - 150						

QC Sample Results

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-313706/2-A	
Matrix: Water	

Analysis Batch: 315245

13C2 PFUnA

13C2 PFDoA

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
M2-6:2 FTS	107		25 - 150
M2-8:2 FTS	98		25 - 150

Lab Sample ID: LCSD 320-313706/3-A **Matrix: Water** Analysis Batch: 315245

Analysis Batch: 315245			.						Prep Ba	itch: 31	
Amelia			Spike		LCSD	11	_	0/ D	%Rec.		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)			40.0	40.7		ng/L		102	70 - 130	1	30
Perfluoropentanoic acid (PFPeA)			40.0	39.4		ng/L		98	66 - 126	1	30
Perfluorohexanoic acid (PFHxA)			40.0	39.4		ng/L		98	66 - 126	2	30
Perfluoroheptanoic acid (PFHpA)			40.0	38.1		ng/L		95	66 - 126	3	30
Perfluorooctanoic acid (PFOA)			40.0	38.0		ng/L		95	64 - 124	4	30
Perfluorononanoic acid (PFNA)			40.0	36.7		ng/L		92	68 - 128	7	30
Perfluorodecanoic acid (PFDA)			40.0	37.9		ng/L		95	69 - 129	2	30
Perfluoroundecanoic acid			40.0	37.6		ng/L		94	60 - 120	3	30
(PFUnA)			40.0	40.0		ng/L		100	71 - 131	0	30
Perfluorododecanoic acid (PFDoA)			40.0	40.0		ng/L		100	71-131	0	50
Perfluorotridecanoic acid			40.0	36.8		ng/L		92	72 - 132	6	30
(PFTriA)						Ū					
Perfluorotetradecanoic acid			40.0	38.2		ng/L		96	68 - 128	1	30
(PFTeA)											
Perfluorobutanesulfonic acid			35.4	33.3		ng/L		94	73 - 133	8	30
(PFBS)			36.4	30.5		pg/l		84	63 - 123	3	30
Perfluorohexanesulfonic acid (PFHxS)			30.4	30.5		ng/L		04	03 - 123	3	30
Perfluoroheptanesulfonic Acid			38.1	38.8		ng/L		102	68 - 128	0	30
(PFHpS)						0					
Perfluorooctanesulfonic acid			37.1	34.5		ng/L		93	67 - 127	1	30
(PFOS)											
Perfluorodecanesulfonic acid			38.6	35.6		ng/L		92	68 - 128	0	30
(PFDS)			40.0	39.0		~~/l		98	70 - 130	1	30
Perfluorooctanesulfonamide (FOSA)			40.0	39.0		ng/L		90	70 - 130	I	30
N-methylperfluorooctanesulfona			40.0	38.0		ng/L		95	67 - 127	4	30
midoacetic acid (NMeFOSAA)											
N-ethylperfluorooctanesulfonami			40.0	37.9		ng/L		95	65 - 125	1	30
doacetic acid (NEtFOSAA)											
6:2 FTS			37.9	39.4		ng/L		104	66 - 126	4	30
8:2 FTS			38.3	36.2		ng/L		95	67 _ 127	4	30
		LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C4 PFBA	71		25 - 150								
13C5 PFPeA	73		25 - 150								
13C2 PFHxA	76		25 - 150								
13C4 PFHpA	75		25 - 150								
13C4 PFOA	76		25 - 150								
13C5 PFNA	75		25 - 150								
13C2 PFDA	73		25 - 150								

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Eurofins TestAmerica, Sacramento

5

8

25 - 150

25 - 150

71

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320 Matrix: Water	0-313706/3-A			Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA
Analysis Batch: 315245				Prep Batch: 31370
····· , ··· · ·······	LCSD	LCSD		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C2 PFTeDA	67		25 - 150	
13C3 PFBS	76		25 - 150	
18O2 PFHxS	86		25 - 150	
13C4 PFOS	73		25 - 150	
13C8 FOSA	69		25 - 150	
d3-NMeFOSAA	69		25 - 150	
d5-NEtFOSAA	69		25 - 150	
M2-6:2 FTS	88		25 - 150	
M2-8:2 FTS	85		25 - 150	

LCMS

Prep Batch: 313706

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-52978-1	MW-19-02	Total/NA	Water	3535	
320-52978-2	MW-19-01	Total/NA	Water	3535	
MB 320-313706/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-313706/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-313706/3-A	Lab Control Sample Dup	Total/NA	Water	3535	
Analysis Batch: 3152	245				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-52978-1	M\W-19-02	Total/NA	Water	537 (modified)	313706

320-52978-1	MW-19-02	Total/NA	Water	537 (modified)	313706	_
320-52978-2	MW-19-01	Total/NA	Water	537 (modified)	313706	
MB 320-313706/1-A	Method Blank	Total/NA	Water	537 (modified)	313706	_
LCS 320-313706/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	313706	
LCSD 320-313706/3-A	Lab Control Sample Dup	Total/NA	Water	537 (modified)	313706	

Lab Chronicle

Job ID: 320-52978-1

Matrix: Water

Matrix: Water

Lab Sample ID: 320-52978-1

Client Sample ID: MW-19-02 Date Collected: 08/02/19 13:37 Date Received: 08/06/19 10:25

	Batch	Batch	Bun	Dil	Initial Amount	Final	Batch	Prepared	Analyst	Lab
Prep Type Total/NA	Type Prep	Method 3535	Run	Factor	Amount 275.9 mL	Amount 10.0 mL	- Number 313706	or Analyzed 08/09/19 05:35	Analyst MTN	- Lab TAL SAC
Total/NA	Analysis	537 (modified)		10			315245	08/15/19 01:57	JRB	TAL SAC

Client Sample ID: MW-19-01 Date Collected: 08/02/19 16:40 Date Received: 08/06/19 10:25

[_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3535			283.7 mL	10.0 mL	313706	08/09/19 05:35	MTN	TAL SAC
	Total/NA	Analysis	537 (modified)		10			315245	08/15/19 02:05	JRB	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Project/Site: PlumeStop

Job ID: 320-52978-1

_	-			-
			TeefAmeeniee	
	anoratory	FILFOTING	TestAmerica.	Sacramonto
	auuiauuiv.	LUIUIIIS		

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-020	01-20-21
ANAB	Dept. of Defense ELAP		L2468	01-20-21
ANAB	DoD		L2468	01-20-21
ANAB	DOE		L2468.01	01-20-21
ANAB	ISO/IEC 17025		L2468	08-09-21
Arizona	State		AZ0708	08-11-20
Arkansas DEQ	State Program	6	88-0691	06-17-20
California	State		2897	01-31-20
California	State Program	9	2897	01-31-20
Colorado	State Program	8	CA00044	08-31-19
Connecticut	State		PH-0691	06-30-21
Connecticut	State Program	1	PH-0691	06-30-21
Florida	NELAP	4	E87570	06-30-20
Florida	NELAP		E87570	06-30-20
Hawaii	State		<cert no.=""></cert>	01-29-20
Hawaii	State Program	9	N/A	01-29-20
Illinois	NELAP	5	200060	03-17-20 *
Illinois	NELAP		200060	03-17-20
Kansas	NELAP	7	E-10375	10-31-19
Louisiana	NELAP	6	30612	06-30-20
Maine	State Program	1	CA0004	04-14-20
Michigan	State		9947	01-29-20
Michigan	State Program	5	9947	01-31-20
New Hampshire	NELAP	1	2997	04-20-20
New York	NELAP	2	11666	04-01-20
Oregon	NELAP	10	4040	01-29-20
Oregon	NELAP		4040	01-29-20
Pennsylvania	NELAP	3	68-01272	03-31-20
Pennsylvania	NELAP		68-01272	03-31-20
Texas	NELAP	6	T104704399	05-31-20
Texas	NELAP		T104704399-19-13	05-31-20
US Fish & Wildlife	Federal		LE148388-0	07-31-20
US Fish & Wildlife	US Federal Programs		58448	07-31-20
USDA	Federal		P330-18-00239	01-17-21
USEPA UCMR	Federal	1	CA00044	12-31-20
Utah	NELAP	8	CA00044	02-29-20
Vermont	State Program	1	VT-4040	04-16-20
Virginia	NELAP	3	460278	03-14-20
Virginia	NELAP		460278	03-14-20
Washington	State		C581	05-05-20
Washington	State Program	10	C581	05-05-20
West Virginia (DW)	State		9930C	12-31-19
West Virginia (DW)	State Program	3	9930C	12-31-19
Wyoming	State Program	8	8TMS-L	01-28-19 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

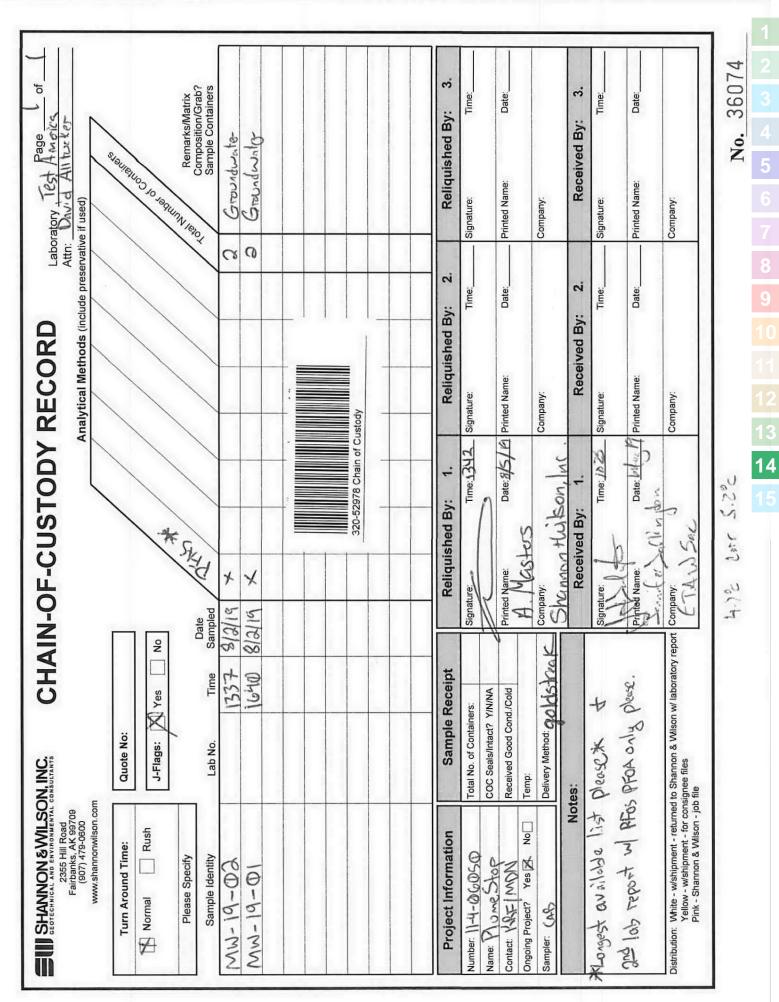
Client: Shannon & Wilson, Inc Project/Site: PlumeStop

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.


Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: PlumeStop

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-52978-1	MW-19-02	Water	08/02/19 13:37	08/06/19 10:25	
320-52978-2	MW-19-01	Water	08/02/19 16:40	08/06/19 10:25	

8/19/2019

Client: Shannon & Wilson, Inc

Login Number: 52978 List Number: 1 Creator: Oropeza, Salvador

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seal present with no number.
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-52978-1

List Source: Eurofins TestAmerica, Sacramento

Laboratory Data Review Checklist

Completed By:

Kristen Freiburger

Title:

Associate

Date:

August 19, 2019

CS Report Name:

Fairbanks International Airport (FAI)

Report Date:

August 19, 2019

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

TestAmerica Laboratories, Inc.

Laboratory Report Number:

320-52978-1

ADEC File Number:

100.38.277

Hazard Identification Number:

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

• Yes O No Comments:

The ADEC certified the TestAmerica Laboratories West Sacramento, CA location for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018. These compounds were included in the ADEC's Contaminated Sites Laboratory Approval 17-020.

- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
 - Yes ^③ No Comments:

Analyses were performed by TestAmerica Laboratories, Inc. in West Sacramento, CA.

- 2. <u>Chain of Custody (CoC)</u>
 - a. CoC information completed, signed, and dated (including released/received by)?

Yes	🔿 No	Comments:

b. Correct Analyses requested?

• Yes O No

Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

• • •	les	© No	Comments:

The temperature blank was measured within the acceptable temperature range of 0 $^{\circ}$ C to 6 $^{\circ}$ C upon arrival at the laboratory. The temperature of the sample cooler upon receipt was 5.2 $^{\circ}$ C.

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

• Yes • No Comments:

Analysis of PFAS by this method does not require chemical preservation.

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

• Yes O No Comments:

The sample receipt form notes that the samples arrived at the laboratory in good condition.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

• Yes • No Comments:

There were no discrepancies noted by the laboratory in the sample receipt documentation.

e. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected.

4. <u>Case Narrative</u>

a. Present and understandable?

• Yes • No Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

• Yes • No Comments:

The samples arrived in good condition, properly preserved, and within the required temperature range.

The case narrative notes there was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate (MSD) in conjunction with laboratory preparation batch 320-313706.

The case narratives notes the results are reported using a diluted extract due to high concentration of target analytes.

The laboratory notes samples *MW-19-01* and *MW-19-02* were received with a light orange color and sediment at the bottom of the bottle prior to extraction.

c. Were all corrective actions documented?

○ Yes ● No Comments:

No corrective actions were documented in the case narrative.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The case narrative does not note an effect on data quality.

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

• Yes • No Comments:

b. All applicable holding times met?

• Yes • No Comments:

The laboratory indicates that the water samples were analyzed using direct injection. The 28-day hold time for analysis using direct aqueous injection (DAI) was met for all samples.

c. All soils reported on a dry weight basis?

🔿 Yes 🛛 💿 No

Comments:

N/A; soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

• Yes • No

Comments:

The LOQ, equivalent to the TestAmerica Reporting Limit (RL), is less than the applicable ADEC regulatory limits for drinking water in this sample.

e. Data quality or usability affected?

○ Yes ● No Comments:

The data quality and/or usability are not affected.

6. QC Samples

a. Method Blank

i. One method blank reported per matrix, analysis and 20 samples?

• Yes O No Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

• Yes • No Comments:

Yes; however, PFTeA and PFHxS were detected below the LOQ in the method blank at 0.300 J ppt and 0.276 J ppt, respectively.

iii. If above LOQ, what samples are affected?

Comments:

None. PFTeA was not detected in the associated projects. PFHxS was detected at concentrations greater than 10 times the method blank detection.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

No samples are affected; therefore, qualification is not required.

v. Data quality or usability affected?

Comments:

The data quality and/or usability are not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

• Yes • No Comments:

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
- Yes ⊙ No Comments:

N/A; metals and/or inorganics were not analyzed as part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

• Yes • No Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

• Yes • No Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

None; analytical accuracy and precision were demonstrated to be within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

○ Yes No Comments:

Qualification of the data was not required; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability are not affected.

c. Surrogates - Organics Only

i. Are surrogate recoveries reported for organic analyses - field, QC and laboratory samples?

• Yes • No Comments:

The analytical method WS-LC-0025 uses IDA recovery, which entails adding a 13C-isotope of each target analyte, and assessing the recovery of each analyte. The isotopically-labeled compounds are discussed as surrogates for this method.

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

• Yes • No Comments:

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

○ Yes • No Comments:

N/A; there were no IDA recovery failures associated with this work order.

iv. Data quality or usability affected?

Comments:

The data quality and usability are not affected; see above.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Comments:

🔿 Yes 🔎 No

n not velotile common der therefore, a trig blank is not re

PFAS are not volatile compounds; therefore, a trip blank is not required.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

○ Yes ● No Comments:

N/A; a trip blank is not required.

iii. All results less than LOQ?

○ Yes ⊙ No Comments:

N/A; a trip blank is not required.

iv. If above LOQ, what samples are affected?

Comments:

None; a trip blank was not submitted with this work order.

v. Data quality or usability affected?

Comments:

The data quality and/or usability are not affected; see above.

- e. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

• Yes • No Comments:

ii. Submitted blind to lab?

○ Yes ⊙ No Comments:

A field-duplicate sample was not collected for this project.

 iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)
 RPD (%) = Absolute value of: (R₁-R₂) x 100

$$\frac{(R_1-R_2)}{((R_1+R_2)/2)}$$
 x 100

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

• Yes • No

Comments:

N/A; a field-duplicate sample was not submitted in this work order.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

The data quality and/or usability are not affected; see above

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

○ Yes ● No ○ Not Applicable

An equipment blank was not collected for this project.

- i. All results less than LOQ?
- Yes ⊙ No Comments:

N/A; see above.

ii. If above LOQ, what samples are affected?

Comments:

N/A; an equipment-blank sample was not collected.

iii. Data quality or usability affected?

Comments:

No, data quality and/or usability were not affected.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?

○ Yes ⊙ No Comments:

There were no additional flags/qualifiers required for this work order.

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-55769-1 Client Project/Site: PFAS

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Marcy Nadel

Authorized for release by: 11/18/2019 3:07:01 PM

David Alltucker, Project Manager I (916)374-4383 david.alltucker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

Definitions/Glossary

Qualifiers

Qualifiers		3
LCMS Qualifier	Qualifier Description	Δ
В	Compound was found in the blank and sample.	
E	Result exceeded calibration range.	5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	0
Glossary		— 6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	7
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	_
%R	Percent Recovery	0
CFL	Contains Free Liquid	Ŏ
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEO	Toxicity Equivalent Quotient (Dioxin)

Toxicity Equivalent Quotient (Dioxin) TEQ

Job ID: 320-55769-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-55769-1

Receipt

The samples were received on 10/29/2019 11:35 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.5° C.

LCMS

Method 537 (modified): Due to a shortage in the marketplace for 13C3-PFBS, the target analytes Perfluorobutanesulfonic acid (PFBS) and/or Perfluoropentanesulfonic acid (PFPeS) could not be quantitated against 13C3-PFBS (its labeled variant) as listed in the SOP. PFBS and PFPeS were quantitated versus 18O2-PFHxS instead.

Method 537 (modified): The concentration of Perfluorohexanesulfonic acid (PFHxS) associated with the following samples exceeded the instrument calibration range: MW-1903-20 (320-55769-1) and MW-1904-36 (320-55769-2). These analytes have been qualified; however, the peak did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: the following samples contain a thin layer of sediment/particulates at the bottom of the bottle prior to extraction: MW-1903-20 (320-55769-1) and MW-1904-36 (320-55769-2)

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-336875.

Method 3535: During the solid phase extraction process, the following samples have non-settable particulates which clogged the extraction column: MW-1903-20 (320-55769-1).

Method 3535: The following samples are yellow after extraction: MW-1903-20 (320-55769-1) and MW-1904-36 (320-55769-2)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: MW-1903-20

Lab Sample ID: 320-55769-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	25	B	1.8	0.31	ng/L		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	190		1.8	0.52	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	22		1.8	0.22	ng/L	1	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	58		1.8	0.44	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	220		1.8	0.76	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	96		1.8	0.18	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	470	EB	1.8	0.15	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	280		1.8	0.48	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	11		1.8	0.17	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonamide (FOSA)	0.35	J	1.8	0.31	ng/L	1	537 (modified)	Total/NA

Client Sample ID: MW-1904-36

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorobutanoic acid (PFBA)	13	B	1.8	0.31	ng/L	1	- 537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	160		1.8	0.52	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	30		1.8	0.22	ng/L	1	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	25		1.8	0.44	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	33		1.8	0.76	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	58		1.8	0.18	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	600	ΕB	1.8	0.15	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	15		1.8	0.48	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	1.6	J	1.8	0.17	ng/L	1	537 (modified)	Total/NA
HFPO-DA (GenX)	2.6	J	3.6	1.3	ng/L	1	537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: MW-1903-20 Date Collected: 10/25/19 12:49 Date Received: 10/29/19 11:35

Lab Sample ID: 320-55769-1

Matrix: Water

Nethod: 537 (modified) - Fluor	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	25	В	1.8	0.31			11/08/19 05:29		1
Perfluorohexanoic acid (PFHxA)	190		1.8	0.52	-			11/11/19 03:43	1
Perfluoroheptanoic acid (PFHpA)	22		1.8	0.22				11/11/19 03:43	1
Perfluoropentanoic acid (PFPeA)	58		1.8	0.44	-		11/08/19 05:29	11/11/19 03:43	1
Perfluorooctanoic acid (PFOA)	220		1.8	0.76	ng/L		11/08/19 05:29	11/11/19 03:43	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		11/08/19 05:29	11/11/19 03:43	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		11/08/19 05:29	11/11/19 03:43	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		11/08/19 05:29	11/11/19 03:43	1
Perfluorododecanoic acid (PFDoA)	ND		1.8		ng/L		11/08/19 05:29	11/11/19 03:43	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		11/08/19 05:29	11/11/19 03:43	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.26	•		11/08/19 05:29	11/11/19 03:43	1
Perfluorobutanesulfonic acid PFBS)	96		1.8		ng/L		11/08/19 05:29	11/11/19 03:43	1
Perfluorohexanesulfonic acid PFHxS)	470	EB	1.8	0.15	-			11/11/19 03:43	1
Perfluorooctanesulfonic acid PFOS)	280		1.8	0.48	-			11/11/19 03:43	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		18		ng/L			11/11/19 03:43	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		18		ng/L		11/08/19 05:29		1
Perfluoroheptanesulfonic Acid PFHpS)	11		1.8	0.17	-		11/08/19 05:29		1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.29	-		11/08/19 05:29		1
Perfluorooctanesulfonamide FOSA)	0.35	J	1.8	0.31	-			11/11/19 03:43	1
S:2 FTS	ND		18		ng/L			11/11/19 03:43	1
3:2 FTS	ND		18		ng/L		11/08/19 05:29		1
OCI-PF3ONS	ND		1.8		ng/L		11/08/19 05:29		1
HFPO-DA (GenX)	ND		3.6		ng/L			11/11/19 03:43	1
11CI-PF3OUdS	ND		1.8		ng/L		11/08/19 05:29		1
4,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND		1.8	0.16	ng/L		11/08/19 05:29	11/11/19 03:43	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	93		25 - 150				11/08/19 05:29	11/11/19 03:43	1
13C4 PFHpA	97		25 - 150				11/08/19 05:29	11/11/19 03:43	1
13C4 PFOA	102		25 - 150				11/08/19 05:29	11/11/19 03:43	1
13C5 PFNA	98		25 - 150				11/08/19 05:29	11/11/19 03:43	1
13C2 PFDA	106		25 - 150				11/08/19 05:29	11/11/19 03:43	1
13C2 PFUnA	97		25 - 150				11/08/19 05:29	11/11/19 03:43	1
13C8 FOSA	90		25 - 150				11/08/19 05:29	11/11/19 03:43	1
13C2 PFDoA	103		25 - 150				11/08/19 05:29	11/11/19 03:43	1
13C4 PFBA	68		25 - 150					11/11/19 03:43	1
13C2 PFTeDA	94		25 - 150					11/11/19 03:43	1
13C5 PFPeA	91		25 - 150					11/11/19 03:43	1
1802 PFHxS	107		25 - 150					11/11/19 03:43	1
13C4 PFOS	95		25 - 150					11/11/19 03:43	
13-NMeFOSAA	95 94		25 - 150 25 - 150					11/11/19 03:43	1
15-NMEFOSAA 15-NEtFOSAA	94 94		25 - 150 25 - 150					11/11/19 03:43	1
	94 121		25 - 150 25 - 150					11/11/19 03:43 11/11/19 03:43	
M2-6:2 FTS	121		20-100				11/00/19/03/29	11/11/19/03:43	1

Client Sample Results

Limits

25 - 150

Isotope Dilution

13C3 HFPO-DA

Client Sample ID: MW-1903-20 Date Collected: 10/25/19 12:49 Date Received: 10/29/19 11:35

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

%Recovery Qualifier

91

Lab Sample ID: 320-55769-1 Matrix: Water

11/08/19 05:29 11/11/19 03:43

Analyzed

Prepared

5769-1 : Water	
Dil Fac	5
1	6
	8
	9
	13

Client Sample ID: MW-1904-36 Date Collected: 10/25/19 15:02 Date Received: 10/29/19 11:35

Job	ID:	320	-557	69-1
000	ю.	020	001	00 1

Lab Sample ID: 320-55769-2

Matrix: Water

Method: 537 (modified) - Fluor Inalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	13	В	1.8	0.31	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluorohexanoic acid (PFHxA)	160		1.8	0.52	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluoroheptanoic acid (PFHpA)	30		1.8	0.22	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluoropentanoic acid (PFPeA)	25		1.8	0.44	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluorooctanoic acid (PFOA)	33		1.8	0.76	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.26	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluorobutanesulfonic acid PFBS)	58		1.8	0.18	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluorohexanesulfonic acid (PFHxS)	600	ЕВ	1.8	0.15	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluorooctanesulfonic acid (PFOS)	15		1.8	0.48	ng/L		11/08/19 05:29	11/11/19 03:52	1
N-ethylperfluorooctanesulfonamidoac	ND		18	1.7	ng/L		11/08/19 05:29	11/11/19 03:52	1
N-methylperfluorooctanesulfonamidoa xetic acid (NMeFOSAA)	ND		18	2.8	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluoroheptanesulfonic Acid PFHpS)	1.6	J	1.8	0.17	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.28	ng/L		11/08/19 05:29	11/11/19 03:52	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.31	ng/L		11/08/19 05:29	11/11/19 03:52	1
2 FTS	ND		18	1.8	ng/L		11/08/19 05:29	11/11/19 03:52	1
2 FTS	ND		18	1.8	ng/L		11/08/19 05:29	11/11/19 03:52	1
CI-PF3ONS	ND		1.8	0.21	ng/L		11/08/19 05:29	11/11/19 03:52	1
HFPO-DA (GenX)	2.6	J	3.6	1.3	ng/L		11/08/19 05:29	11/11/19 03:52	1
11CI-PF3OUdS	ND		1.8	0.28	ng/L		11/08/19 05:29	11/11/19 03:52	1
I,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND		1.8	0.16	ng/L		11/08/19 05:29	11/11/19 03:52	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I 3C2 PFHxA	96		25 - 150				11/08/19 05:29	11/11/19 03:52	1
3C4 PFHpA	97		25 - 150					11/11/19 03:52	1
ISC4 PFOA	107		25 - 150					11/11/19 03:52	1
I3C5 PFNA	106		25 - 150					11/11/19 03:52	1
ISC2 PFDA	106		25 - 150				11/08/19 05:29	11/11/19 03:52	1
3C2 PFUnA	104		25 - 150					11/11/19 03:52	1
3C8 FOSA	92		25 - 150					11/11/19 03:52	
13C2 PFDoA	112		25 - 150					11/11/19 03:52	1
13C4 PFBA	68		25 - 150					11/11/19 03:52	1
I3C2 PFTeDA	105		25 - 150					11/11/19 03:52	
3C5 PFPeA	93		25 - 150					11/11/19 03:52	1
802 PFHxS	108		25 - 150					11/11/19 03:52	1
3C4 PFOS	99		25 - 150					11/11/19 03:52	1
13-NMeFOSAA	101		25 - 150					11/11/19 03:52	1
15-NEtFOSAA	97		25 - 150 25 - 150					11/11/19 03:52	1
M2-6:2 FTS	97 134		25 - 150 25 - 150					11/11/19 03:52	1
M2-0.2 FTS M2-8:2 FTS	134		25 - 150 25 - 150					11/11/19 03:52	1
13C3 HFPO-DA	74		20 - 100				11/00/19 00.29	11/11/19 03:52	1

M282FTS = M2-8:2 FTS HFPODA = 13C3 HFPO-DA

Method: 537 (modified) - Fluorinated Alkyl Substances Matrix: Water

Prep Type: Total/NA

5

6 7 8

_			D.						
		DELL -		-		•	ceptance L	-	DED . (
		PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnA	PFOSA	PFDoA
Lab Sample ID 320-55769-1	Client Sample ID MW-1903-20	(25-150) 	(25-150) 97	(25-150) 102	(25-150) 98	(25-150) 106	(25-150) 97	(25-150) 90	(25-150)
									103
320-55769-2	MW-1904-36	96	97	107	106	106	104	92	112
LCS 320-336875/2-A	Lab Control Sample	101	102	106	102	102	105	90	109
LCSD 320-336875/3-A	Lab Control Sample Dup	100	100	107	102	104	103	92	114
MB 320-336875/1-A	Method Blank	106	102	109	107	107	105	93	115
			Perce	ent Isotope	Dilution Re	ecovery (Ac	ceptance L	imits)	
		PFBA	PFTDA	PFPeA	PFHxS	PFOS	-NMeFOS	-NEtFOS/	M262FTS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
320-55769-1	MW-1903-20	68	94	91	107	95	94	94	121
320-55769-2	MW-1904-36	68	105	93	108	99	101	97	134
LCS 320-336875/2-A	Lab Control Sample	100	112	100	109	97	99	98	106
LCSD 320-336875/3-A	Lab Control Sample Dup	100	112	99	112	102	100	99	108
MB 320-336875/1-A	Method Blank	103	115	101	118	102	99	99	109
			Perce	ent Isotope	Dilution Re	coverv (Ac	ceptance L	imits)	
		M282FTS	HFPODA			, (···		,	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)						
320-55769-1	MW-1903-20	119	91						
320-55769-2	MW-1904-36	133	74						
LCS 320-336875/2-A	Lab Control Sample	112	97						
LCSD 320-336875/3-A	Lab Control Sample Dup	112	67						
MB 320-336875/1-A	Method Blank	113	117						
Surrogate Legend									
PFHxA = 13C2 PFHxA									
PFHpA = 13C4 PFHpA									
PFOA = 13C4 PFOA									
PFNA = 13C5 PFNA									
PFDA = 13C2 PFDA									
PFUnA = 13C2 PFUnA									
PFOSA = 13C8 FOSA									
PFDoA = 13C2 PFDoA									
PFBA = 13C4 PFBA									
PFTDA = 13C2 PFTeDA									
PFPeA = 13C5 PFPeA									
PFHxS = 18O2 PFHxS									
PFOS = 13C4 PFOS									
d3-NMeFOSAA = d3-NM	eFOSAA								
d5-NEtFOSAA = d5-NEtF									
M262FTS = M2-6:2 FTS									

Prep Type: Total/NA

Client Sample ID: Method Blank

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-336875/1-A Matrix: Water Analysis Batch: 337470

Analysis Batch: 337470								Prep Batch:	336875
		МВ							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	0.864	J	2.0		ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluorohexanoic acid (PFHxA)	ND		2.0		ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49	ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29	ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluorohexanesulfonic acid (PFHxS)	0.301	J	2.0	0.17	ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		11/08/19 05:29	11/11/19 03:19	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20	1.9	ng/L		11/08/19 05:29	11/11/19 03:19	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20		ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0		ng/L			11/11/19 03:19	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32	ng/L		11/08/19 05:29	11/11/19 03:19	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0		ng/L		11/08/19 05:29	11/11/19 03:19	1
6:2 FTS	ND		20	2.0	ng/L		11/08/19 05:29	11/11/19 03:19	1
8:2 FTS	ND		20		ng/L		11/08/19 05:29	11/11/19 03:19	1
9CI-PF3ONS	ND		2.0	0.24	ng/L		11/08/19 05:29	11/11/19 03:19	1
HFPO-DA (GenX)	ND		4.0	1.5	ng/L		11/08/19 05:29	11/11/19 03:19	1
11CI-PF3OUdS	ND		2.0		ng/L		11/08/19 05:29	11/11/19 03:19	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.18	ng/L		11/08/19 05:29	11/11/19 03:19	1

	MB	МВ				
Isotope Dilution	%Recovery		Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	106		25 - 150	11/08/19 05:29	11/11/19 03:19	1
13C4 PFHpA	102		25 - 150	11/08/19 05:29	11/11/19 03:19	1
13C4 PFOA	109		25 - 150	11/08/19 05:29	11/11/19 03:19	1
13C5 PFNA	107		25 - 150	11/08/19 05:29	11/11/19 03:19	1
13C2 PFDA	107		25 - 150	11/08/19 05:29	11/11/19 03:19	1
13C2 PFUnA	105		25 - 150	11/08/19 05:29	11/11/19 03:19	1
13C8 FOSA	93		25 - 150	11/08/19 05:29	11/11/19 03:19	1
13C2 PFDoA	115		25 - 150	11/08/19 05:29	11/11/19 03:19	1
13C4 PFBA	103		25 - 150	11/08/19 05:29	11/11/19 03:19	1
13C2 PFTeDA	115		25 - 150	11/08/19 05:29	11/11/19 03:19	1
13C5 PFPeA	101		25 - 150	11/08/19 05:29	11/11/19 03:19	1
18O2 PFHxS	118		25 - 150	11/08/19 05:29	11/11/19 03:19	1
13C4 PFOS	102		25 - 150	11/08/19 05:29	11/11/19 03:19	1
d3-NMeFOSAA	99		25 - 150	11/08/19 05:29	11/11/19 03:19	1
d5-NEtFOSAA	99		25 - 150	11/08/19 05:29	11/11/19 03:19	1
M2-6:2 FTS	109		25 - 150	11/08/19 05:29	11/11/19 03:19	1
M2-8:2 FTS	113		25 - 150	11/08/19 05:29	11/11/19 03:19	1
13C3 HFPO-DA	117		25 - 150	11/08/19 05:29	11/11/19 03:19	1

Eurofins TestAmerica, Sacramento

5

8 9

Client Sample ID: Lab Control Sample

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample	ID: LCS 320-336875/2-A

Matrix: Water								÷	Prep Type: Total/NA
Analysis Batch: 337470			Omilia	1.00	1.00				Prep Batch: 336875
Analyte			Spike Added		LCS Qualifier	Unit	п	%Rec	%Rec. Limits
Perfluorobutanoic acid (PFBA)			40.0	44.9	Quaimer	ng/L		112	76 - 136
Perfluorobexanoic acid (PFHxA)			40.0	39.1		ng/L		98	73 - 133
Perfluoroheptanoic acid (PFHpA)			40.0	40.5		ng/L		101	72 - 132
Perfluoropentanoic acid (PFPeA)			40.0	40.3		ng/L		101	72 - 132
Perfluorooctanoic acid (PFOA)			40.0	38.2		ng/L		96	70 - 130
Perfluorononanoic acid (PFNA)			40.0	43.6		Ũ		109	75 - 135
· · · · · · · · · · · · · · · · · · ·						ng/L			
Perfluorodecanoic acid (PFDA)			40.0	42.2		ng/L		105	76 - 136
Perfluoroundecanoic acid			40.0	36.6		ng/L		91	68 - 128
(PFUnA) Perfluorododecanoic acid			40.0	38.4		ng/L		96	71 - 131
(PFDoA)			40.0	50.4		iig/L		50	/1-101
Perfluorotridecanoic acid			40.0	38.6		ng/L		96	71 - 131
(PFTriA)						Ũ			
Perfluorotetradecanoic acid			40.0	37.7		ng/L		94	70 - 130
(PFTeA)									
Perfluorobutanesulfonic acid			35.4	34.1		ng/L		96	67 - 127
(PFBS)									
Perfluorohexanesulfonic acid (PFHxS)			36.4	31.7		ng/L		87	59 - 119
(PFRXS) Perfluorooctanesulfonic acid			37.1	38.6		ng/L		104	70 - 130
(PFOS)			0111	00.0		ng/E		101	101100
Perfluoroheptanesulfonic Acid			38.1	39.9		ng/L		105	76 - 136
(PFHpS)						•			
Perfluorodecanesulfonic acid			38.6	42.3		ng/L		110	71 - 131
(PFDS)									
Perfluorooctanesulfonamide			40.0	43.3		ng/L		108	73 - 133
(FOSA)			37.9	43.2		na/l		114	59 - 175
6:2 FTS 8:2 FTS			37.9	43.2 37.8		ng/L			59 - 175 75 - 135
						ng/L		99	
9CI-PF3ONS			37.3	44.8		ng/L		120	75 - 135
HFPO-DA (GenX)			40.0	42.6		ng/L		106	51 - 173
11CI-PF3OUdS			37.7	37.9		ng/L		101	54 - 114
4,8-Dioxa-3H-perfluorononanoic			37.7	44.2		ng/L		117	79 - 139
acid (ADONA)	LCS	108							
lastana Dilutian			l imite						
Isotope Dilution	%Recoverv	Juantier	Limits						

Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	101		25 - 150
13C4 PFHpA	102		25 - 150
13C4 PFOA	106		25 - 150
13C5 PFNA	102		25 - 150
13C2 PFDA	102		25 - 150
13C2 PFUnA	105		25 - 150
13C8 FOSA	90		25 - 150
13C2 PFDoA	109		25 - 150
13C4 PFBA	100		25 - 150
13C2 PFTeDA	112		25 - 150
13C5 PFPeA	100		25 - 150
18O2 PFHxS	109		25 - 150
13C4 PFOS	97		25 - 150
d3-NMeFOSAA	99		25 - 150
d5-NEtFOSAA	98		25 - 150

QC Sample Results

5

8 9

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-3 Matrix: Water	36875/2-A					Clie	nt Sa	mple ID	: Lab Cor		
									Prep Ty		
Analysis Batch: 337470	201	LCS							Prep Ba	atcn: 3) ססכ
Isotope Dilution	%Recovery		Limits								
M2-6:2 FTS	106		25 - 150								
M2-8:2 FTS	112		25 - 150								
13C3 HFPO-DA	97		25 - 150								
Lab Sample ID: LCSD 320 Matrix: Water	-336875/3-A	x			c	Client Sa	ample	ID: Lat	Control Prep Ty		
Analysis Batch: 337470									Prep Ba		
			Spike	LCSD	LCSD				%Rec.		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Perfluorobutanoic acid (PFBA)			40.0	42.1		ng/L		105	76 - 136	6	
Perfluorohexanoic acid (PFHxA)			40.0	39.8		ng/L		99	73 - 133	2	
Perfluoroheptanoic acid (PFHpA)			40.0	38.6		ng/L		97	72 - 132	5	
Perfluoropentanoic acid (PFPeA)			40.0	37.5		ng/L		94	71 - 131	7	
Perfluorooctanoic acid (PFOA)			40.0	38.2		ng/L		95	70 - 130	, 0	
Perfluorononanoic acid (PFNA)			40.0	40.4		•		95 101	70 - 130 75 - 135	7	
· · · · · · · · · · · · · · · · · · ·						ng/L					
Perfluorodecanoic acid (PFDA)			40.0	39.9		ng/L		100	76 - 136	5	
Perfluoroundecanoic acid (PFUnA)			40.0	39.3		ng/L		98	68 - 128	7	
Perfluorododecanoic acid (PFDoA)			40.0	38.4		ng/L		96	71 - 131	0	
Perfluorotridecanoic acid PFTriA)			40.0	36.9		ng/L		92	71 - 131	4	
Perfluorotetradecanoic acid PFTeA)			40.0	38.4		ng/L		96	70 - 130	2	
Perfluorobutanesulfonic acid PFBS)			35.4	32.2		ng/L		91	67 - 127	6	
Perfluorohexanesulfonic acid PFHxS)			36.4	30.2		ng/L		83	59 - 119	5	
Perfluorooctanesulfonic acid (PFOS)			37.1	34.8		ng/L		94	70 - 130	10	:
Perfluoroheptanesulfonic Acid (PFHpS)			38.1	37.6		ng/L		99	76 - 136	6	
Perfluorodecanesulfonic acid (PFDS)			38.6	40.1		ng/L		104	71 - 131	5	
Perfluorooctanesulfonamide (FOSA)			40.0	42.7		ng/L		107	73 - 133	1	
5:2 FTS			37.9	39.5		ng/L		104	59 - 175	9	
3:2 FTS			38.3	35.8		ng/L		93	75 - 135	5	
OCI-PF3ONS			37.3	39.4		ng/L		106	75 ₋ 135	13	
HFPO-DA (GenX)			40.0	55.4		ng/L		139	51 - 173	26	
11CI-PF3OUdS			37.7	34.9		ng/L		93	54 - 114	8	
4,8-Dioxa-3H-perfluorononanoic			37.7	41.0		ng/L		109	79 - 139	7	
acid (ADONA)	LCSD	LCSD				0					
sotope Dilution	%Recovery		Limits								
13C2 PFHxA	100		25 - 150								
13C4 PFHpA	100		25 - 150								
13C4 PFOA	100		25 - 150 25 - 150								
13C5 PFNA	107		25 - 150 25 - 150								
13C2 PFDA	104		25 - 150 25 - 150								
13C2 PFUnA	103		25 - 150								

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320 Matrix: Water Analysis Batch: 337470)-336875/3-A			Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 336875
Isotope Dilution	LCSD %Recovery	LCSD Qualifier	Limits	
13C2 PFDoA	114	Quanner	25 - 150	
13C4 PFBA	100		25 - 150	
13C2 PFTeDA	112		25 - 150	
13C5 PFPeA	99		25 - 150	
18O2 PFHxS	112		25 - 150	
13C4 PFOS	102		25 - 150	
d3-NMeFOSAA	100		25 - 150	
d5-NEtFOSAA	99		25 - 150	
M2-6:2 FTS	108		25 - 150	
M2-8:2 FTS	112		25 - 150	
13C3 HFPO-DA	67		25 - 150	

LCMS

Prep Batch: 336875

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-55769-1	MW-1903-20	Total/NA	Water	3535	
320-55769-2	MW-1904-36	Total/NA	Water	3535	
MB 320-336875/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-336875/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-336875/3-A	Lab Control Sample Dup	Total/NA	Water	3535	
Analysis Batch: 3374	470				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

320-55769-1	MW-1903-20	Total/NA	Water	537 (modified)	336875	
320-55769-2	MW-1904-36	Total/NA	Water	537 (modified)	336875	9
MB 320-336875/1-A	Method Blank	Total/NA	Water	537 (modified)	336875	
LCS 320-336875/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	336875	
LCSD 320-336875/3-A	Lab Control Sample Dup	Total/NA	Water	537 (modified)	336875	

Job ID: 320-55769-1

Client Sample ID: MW-1903-20 Date Collected: 10/25/19 12:49 Date Received: 10/29/19 11:35

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			279.3 mL	10.0 mL	336875	11/08/19 05:29	MTN	TAL SAC
Total/NA	Analysis	537 (modified)		1			337470	11/11/19 03:43	P1N	TAL SAC

Client Sample ID: MW-1904-36 Date Collected: 10/25/19 15:02 Date Received: 10/29/19 11:35

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			280.9 mL	10.0 mL	336875	11/08/19 05:29	MTN	TAL SAC
Total/NA	Analysis	537 (modified)		1			337470	11/11/19 03:52	P1N	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Project/Site: PFAS

Job ID: 320-55769-1

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
NAB	ISO/IEC 17025	L2468	01-20-21
vrizona	State	AZ0708	08-11-20
vrkansas DEQ	State	19-042-0	06-17-20
California	State	2897	01-31-20
Colorado	State	CA0004	08-31-20
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-20
Georgia	State	4040	01-29-20
lawaii	State	<cert no.=""></cert>	01-29-20
llinois	NELAP	200060	03-17-20
Cansas	NELAP	E-10375	10-31-20 *
ouisiana	NELAP	01944	06-30-20
laine	State	2018009	04-14-20
lichigan	State	9947	01-29-20
lichigan	State Program	9947	01-31-20
evada	State	CA000442020-1	07-31-20
ew Hampshire	NELAP	2997	04-18-20
ew Jersey	NELAP	CA005	06-30-20
ew York	NELAP	11666	04-01-20
Dregon	NELAP	4040	01-29-20
ennsylvania	NELAP	68-01272	03-31-20
exas	NELAP	T104704399-19-13	05-31-20
S Fish & Wildlife	US Federal Programs	58448	07-31-20
ISDA	US Federal Programs	P330-18-00239	07-31-21
tah	NELAP	CA000442019-01	02-29-20
ermont	State	VT-4040	04-16-20
ïrginia	NELAP	460278	03-14-20
Vashington	State	C581	05-05-20
Vest Virginia (DW)	State	9930C	12-31-19
Vyoming	State Program	8TMS-L	01-28-19 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

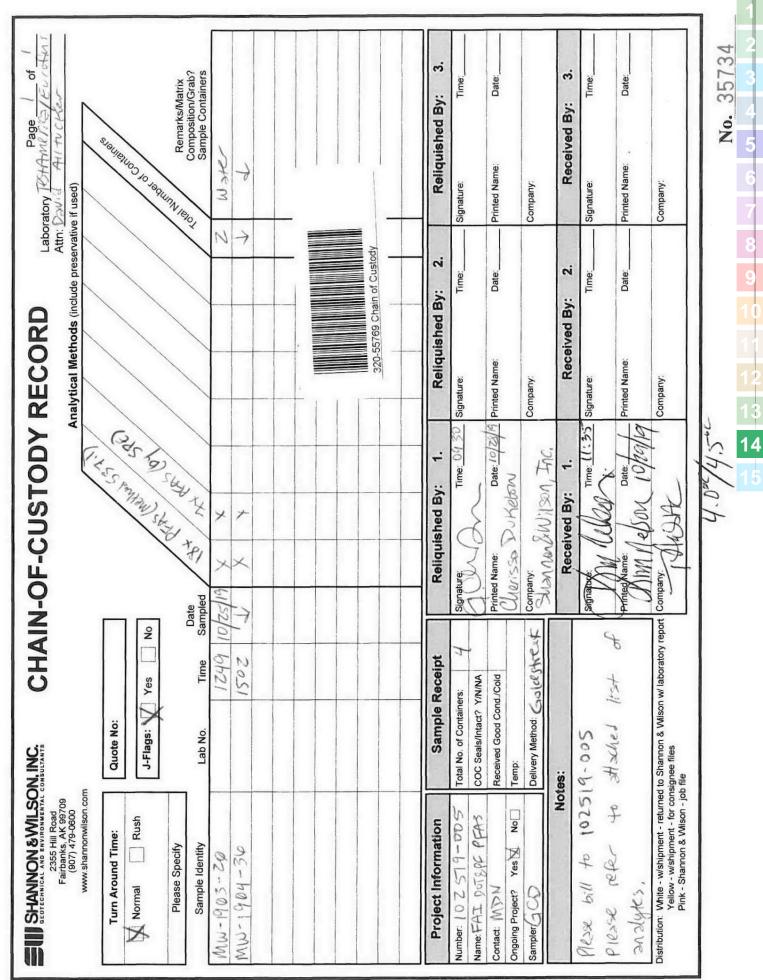
Client: Shannon & Wilson, Inc Project/Site: PFAS

-			
Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.


Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: PFAS

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-55769-1	MW-1903-20	Water	10/25/19 12:49	10/29/19 11:35	
320-55769-2	MW-1904-36	Water	10/25/19 15:02	10/29/19 11:35	

Client: Shannon & Wilson, Inc

Login Number: 55769 List Number: 1 Creator: Oropeza, Salvador

Quantian	Anower	Comment
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1091853, 1091852
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins TestAmerica, Sacramento

Laboratory Data Review Checklist

Completed By:

Brittany Blood

Title:

Environmental Professional I

Date:

11/25/2019

Consultant Firm:

Shannon and Wilson, Inc.

Laboratory Name:

Eurofins TestAmerica

Laboratory Report Number:

320-55769-1

Laboratory Report Date:

11/18/2019

CS Site Name:

Plume Stop PFAS

ADEC File Number:

100.38.277

Hazard Identification Number:

26816

Laboratory Report Date:

11/18/2019

CS Site Name:

Plume Stop PFAS

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

Yes \boxtimes No \square N/A \square Comments:

The ADEC certified the TestAmerica/Eurofins Laboratories West Sacramento, CA location for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018. These compounds were included in the ADEC's Contaminated Sites Laboratory Approval 17-020.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes \square No \square N/A \boxtimes Comments:

Samples were not transferred to another laboratory.

- 2. Chain of Custody (CoC)
 - a. CoC information completed, signed, and dated (including released/received by)?

Yes \boxtimes No \square N/A \square Comments:

b. Correct analyses requested?

Yes \boxtimes No \square N/A \square Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes \boxtimes No \square N/A \square Comments:

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \square No \square N/A \boxtimes Comments:

Analysis of PFAS compounds does not require chemical preservation.

Laboratory Report Date:

11/18/2019

CS Site Name:

Plume Stop PFAS

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

The sample receipt form notes that the samples were received in good condition.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \square No \square N/A \boxtimes Comments:

There were not any discrepancies with this work order.

e. Data quality or usability affected?

Comments:

Data quality and/or usability was not affected; see above.

- 4. Case Narrative
 - a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

11/18/2019

CS Site Name:

Plume Stop PFAS

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

Method 537 (modified): Due to a shortage in the marketplace for 13C3-PFBS, the target analytes Perfluorobutanesulfonic acid (PFBS) and/or Perfluoropentanesulfonic acid (PFPeS) could not be quantitated against 13C3-PFBS (its labeled variant) as listed in the SOP. PFBS and PFPeS were quantitated versus 18O2-PFHxS instead.

The concentration of perfluorohexanesulfonic acid (PFHxS) associated with the following samples exceeded the instrument calibration range: *MW-1903-20* and *MW-1904-36*. These analytes have been qualified by the laboratory; however, the peak did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range. The aforementioned samples have been flagged "J*".

The following samples contain a thin layer of sediment/particulates at the bottom of the bottle prior to extraction: *MW-1903-20* and *MW-1904-36*.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-336875.

During the solid phase extraction process, the following samples have non-settable particulates which clogged the extraction column: *MW-1903-20*.

The following samples are yellow after extraction: MW-1903-20 and MW-1904-36.

c. Were all corrective actions documented?

Yes \boxtimes No \square N/A \square Comments:

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Data quality and/or usability was not affected; see above.

Laboratory Report Date:

11/18/2019

CS Site Name:

Plume Stop PFAS

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes⊠ N	o□ N/A□	Comments:
--------	---------	-----------

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

These samples are water samples.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \boxtimes No \square N/A \square Comments:

e. Data quality or usability affected?

The data quality and/or usability was not affected; see above

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

All method blank results are less than the LOQ, however the method blank results for PFBA and PFHxS were below the LOQ.

Laboratory Report Date:

11/18/2019

CS Site Name:

Plume Stop PFAS

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

No samples were affected as all PFBA and PFHxS results in the project samples were more than 10 times above the method blank results.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

v. Data quality or usability affected?

Comments:

Data quality and/or usability was not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

N/A; metals and/or inorganics were not analyzed as part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

11/18/2019

CS Site Name:

Plume Stop PFAS

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Not applicable, see above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

No flags or data qualification was required for LCS/LCSD.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and/or usability was not affected; see above.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

YesNoN/AComments:

There was insufficient volume to perform a MS/MSD associated with the preparation batch.

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

YesNoN/AComments:

N/A; metals and/or inorganics were not analyzed as a part of this work order.

Laboratory Report Date:

Site Name: Plume Stop PFAS	
Plume Stop PFAS	
*	
project specified objectives, if appAK102 75%-125%, AK103 60%-	s (%R) reported and within method or laboratory limits and blicable? (AK Petroleum methods: AK101 60%-120%, 120%; all other analyses see the laboratory QC pages)
$\frac{\text{Yes} \square \text{ No} \square \text{ N/A} \boxtimes \text{ Comr}}{\text{See above.}}$	nents:
iv. Precision – All relative percent di limits and project specified object	fferences (RPD) reported and less than method or laboratory ives, if applicable? RPD reported from MS/MSD, and or troleum methods 20%; all other analyses see the laboratory
Yes No N/A Com	nents:
See above.	
-	table limits, what samples are affected? nents:
Not applicable, see above.	
vi. Do the affected sample(s) have da Yes□ No□ N/A⊠ Comm	ta flags? If so, are the data flags clearly defined?
See above.	
vii. Data quality or usability affected Com	? (Use comment box to explain.) nents:
Data quality and/or usability was not affect	cted.
d. Surrogates – Organics Only or Isotope	Dilution Analytes (IDA) – Isotope Dilution Methods Only
i. Are surrogate/IDA recoveries rep samples?	orted for organic analyses – field, QC and laboratory
Yes No N/A Comm	nents:

Laboratory Report Date:

11/18/2019

CS Site Name:

Plume Stop PFAS

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \boxtimes No \square N/A \square Comments:

iv. Data quality or usability affected?

Comments:

Data quality and/or usability was not affected; see above.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

YesNoN/AComments:

PFAS is not a volatile compound, therefore a trip blank was not required.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \square No \square N/A \boxtimes Comments:

A trip blank was not required.

iii. All results less than LOQ and project specified objectives?

YesNoN/AComments:

A trip blank was not required.

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

Not applicable, see above.

Laboratory Report Date:

11/18/2019

CS Site Name:

Plume Stop PFAS

v. Data quality or usability affected?

Comments:

Data quality and or usability were not affected.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \square No \square N/A \boxtimes Comments:

A field-duplicate was not collected for the samples submitted in this work order. However, fieldduplicate samples are submitted at the appropriate frequency for the overall project.

ii. Submitted blind to lab?

Yes \square No \square N/A \boxtimes Comments:

See above.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1-R_2) = x \ 100$ ((R₁+R₂)/2)

> Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \square No \square N/A \boxtimes Comments:

See above.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

Data quality and/or usability were not affected.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

An equipment blank was not submitted with this work order, however an equipment blank was submitted for the overall project.

Laboratory Report Date:

11/18/2019

CS Site Name:

Plume Stop PFAS

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

See above.

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

See above.

iii. Data quality or usability affected?

Comments:

Data quality and or usability was not affected.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

- a. Defined and appropriate?
 - Yes \boxtimes No \square N/A \square Comments:

See section 4b above.

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-57358-1

Client Project/Site: FAI Plume stop Revision: 1

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Marcy Nadel

Authorized for release by: 1/21/2020 8:22:52 AM

David Alltucker, Project Manager I (916)374-4383 david.alltucker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
-	18

Qualifiers

LCMS Qualifier	Qualifier Description	
*	Isotope Dilution analyte is outside acceptance limits.	-
В	Compound was found in the blank and sample.	
I	Value is EMPC (estimated maximum possible concentration).	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

Glossary

Qualifiers		3
LCMS		
Qualifier	Qualifier Description	4
*	Isotope Dilution analyte is outside acceptance limits.	
В	Compound was found in the blank and sample.	5
I	Value is EMPC (estimated maximum possible concentration).	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		7
Abbreviation	These commonly used abbreviations may or may not be present in this report.	· · ·
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	8
%R	Percent Recovery	0
CFL	Contains Free Liquid	0
CNF	Contains No Free Liquid	9
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	13
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 320-57358-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-57358-1

Revision 1/21/2020

This report has been revised to add additional reported analytes.

Receipt

The sample was received on 12/27/2019 8:45 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

LCMS

Method 537 (modified): The "I" qualifier means the transition mass ratio for the indicated analytes were outside of the established ratio limits. The qualitative identification of the analytes has some degree of uncertainty. However, analyst judgment was used to positively identify the analytes. MW-1903-20 (320-57358-1)

Method 537 (modified): The Isotope Dilution Analyte (IDA) recovery of 13C2 PFTeDA associated with the following sample is below the method recommended limit: MW-1903-20 (320-57358-1). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-348841.

Method 3535: Sample is dark amber in color, clear and slightly viscous. Sample extract is amber colored. MW-1903-20 (320-57358-1)

Method 3535: Sample was fortified with IDA, centrifuged and decanted prior to solid-phase extraction. MW-1903-20 (320-57358-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Shannon & Wilson, Inc Project/Site: FAI Plume stop

Client Sample ID: MW-1903-20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorobutanoic acid (PFBA)	1.9	В	1.8	0.32	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.38	JB	1.8	0.15	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.2	JI	1.8	0.49	ng/L	1	537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 320-57358-1

Client Sample ID: MW-1903-20 Date Collected: 12/17/19 13:35 Date Received: 12/27/19 08:45

Lab Sample ID: 320-57358-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	1.9	B	1.8	0.32	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.53	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluoropentanoic acid (PFPeA)	ND		1.8	0.45	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.77	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8		ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluorohexanesulfonic acid (PFHxS)	0.38	JB	1.8	0.15	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluorooctanesulfonic acid (PFOS)	1.2	JI	1.8	0.49	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluoroheptanesulfonic Acid PFHpS)	ND		1.8	0.17	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.29	ng/L		12/31/19 14:55	01/02/20 14:22	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.32	ng/L		12/31/19 14:55	01/02/20 14:22	1
5:2 FTS	ND		18	1.8	ng/L		12/31/19 14:55	01/02/20 14:22	1
3:2 FTS	ND		18	1.8	ng/L		12/31/19 14:55	01/02/20 14:22	1
OCI-PF3ONS	ND		1.8	0.22	ng/L		12/31/19 14:55	01/02/20 14:22	1
HFPO-DA (GenX)	ND		3.6	1.4	ng/L		12/31/19 14:55	01/02/20 14:22	1
11CI-PF3OUdS	ND		1.8	0.29	ng/L		12/31/19 14:55	01/02/20 14:22	1
1,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND		1.8	0.16	ng/L		12/31/19 14:55	01/02/20 14:22	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		18		ng/L		12/31/19 14:55	01/02/20 14:22	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		18	2.8	ng/L		12/31/19 14:55	01/02/20 14:22	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	93		25 - 150				12/31/19 14:55	01/02/20 14:22	1
13C4 PFHpA	85		25 - 150				12/31/19 14:55	01/02/20 14:22	1
13C4 PFOA	92		25 - 150				12/31/19 14:55	01/02/20 14:22	1
13C5 PFNA	85		25 - 150				12/31/19 14:55	01/02/20 14:22	1
13C2 PFDA	80		25 - 150				12/31/19 14:55	01/02/20 14:22	1
13C2 PFUnA	69		25 - 150				12/31/19 14:55	01/02/20 14:22	1
13C8 FOSA	88		25 - 150				12/31/19 14:55	01/02/20 14:22	1
13C2 PFDoA	54		25 - 150				12/31/19 14:55	01/02/20 14:22	1
13C4 PFBA	70		25 - 150				12/31/19 14:55	01/02/20 14:22	1
13C2 PFTeDA	22	*	25 - 150				12/31/19 14:55	01/02/20 14:22	1
13C5 PFPeA	87		25 - 150					01/02/20 14:22	1
1802 PFHxS	102		25 - 150					01/02/20 14:22	1
I3C4 PFOS	95		25 - 150					01/02/20 14:22	
13-NMeFOSAA	78		25 - 150					01/02/20 14:22	1
d5-NEtFOSAA	76		25 - 150					01/02/20 14:22	1
M2-6:2 FTS	123		25 - 150					01/02/20 14:22	
M2-0.2 FTS M2-8:2 FTS	99		25 - 150					01/02/20 14:22	1
13C3 HFPO-DA	99 89		25 - 150 25 - 150					01/02/20 14:22	1
13C3 PFBS	09 107		25 - 150 25 - 150					01/02/20 14:22	1

PFPeA = 13C5 PFPeA PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS

d3-NMeFOSAA = d3-NMeFOSAA d5-NEtFOSAA = d5-NEtFOSAA M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS HFPODA = 13C3 HFPO-DA 13C3-PFBS = 13C3 PFBS

Method: 537 (modified) - Fluorinated Alkyl Substances **Matrix: Water**

Due	- T	
	ep Type: ⁻	i otal/NA
nA	imits) PFOSA	PFDoA
50)	(25-150)	
)	88	54
5	106	108
	103	99
	106	103
ce Li	imits)	
OS	-NEtFOS/	M262FTS

		PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnA	PFOSA	PFDoA	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	
320-57358-1	MW-1903-20	93	85	92	85	80	69	88	54	
LCS 320-348841/2-A	Lab Control Sample	102	93	97	96	97	95	106	108	
LCSD 320-348841/3-A	Lab Control Sample Dup	93	102	95	88	95	91	103	99	
MB 320-348841/1-A	Method Blank	102	97	95	94	92	97	106	103	
			Perc	ent Isotope	Dilution Re	ecovery (Ar	cceptance L	_imits)		
		PFBA	PFTDA	PFPeA	PFHxS	PFOS	-NMeFOS	-NEtFOS/	M262FTS	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	
320-57358-1	MW-1903-20	70	22 *	87	102	95	78	76	123	
LCS 320-348841/2-A	Lab Control Sample	108	100	97	117	118	103	101	117	
LCSD 320-348841/3-A	Lab Control Sample Dup	110	92	99	114	119	100	99	120	
MB 320-348841/1-A	Method Blank	100	97	97	117	117	104	103	117	
			Perc	ent Isotope	Dilution Re	ecovery (Ar	cceptance L	_imits)		
		M282FTS		•		•••	•			
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)						
320-57358-1	MW-1903-20	99	89	107			·			
LCS 320-348841/2-A	Lab Control Sample	116	89	115						
LCSD 320-348841/3-A	Lab Control Sample Dup	120	90	116						
MB 320-348841/1-A	Method Blank	119	76	114						
Surrogate Legend										
PFHxA = 13C2 PFHxA										
PFHpA = 13C4 PFHpA										
PFOA = 13C4 PFOA										
PFNA = 13C5 PFNA										
PFDA = 13C2 PFDA										
PFUnA = 13C2 PFUnA										
PFOSA = 13C8 FOSA										
PFDoA = 13C2 PFDoA										
PFBA = 13C4 PFBA										
PFTDA = 13C2 PFTeDA										
1110/100211100/1										

Percent Isotope Dilution Recovery (Acceptance Limits)

Prep Type: Total/NA

Client Sample ID: Method Blank

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-348841/1-A Matrix: Water Analysis Batch: 348936

I											
	Analysis Batch: 348936								Prep Batch:	348841	
		MB	MB								
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Perfluorobutanoic acid (PFBA)	0.460	J	2.0	0.35	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49	ng/L		12/31/19 14:55	01/02/20 13:58	1	_
	Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		12/31/19 14:55	01/02/20 13:58	1	
l	Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		12/31/19 14:55	01/02/20 13:58	1	
I	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		12/31/19 14:55	01/02/20 13:58	1	
l	Perfluorohexanesulfonic acid (PFHxS)	0.304	J	2.0	0.17	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.19	ng/L		12/31/19 14:55	01/02/20 13:58	1	
l	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	6:2 FTS	ND		20	2.0	ng/L		12/31/19 14:55	01/02/20 13:58	1	
l	8:2 FTS	ND		20	2.0	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	9CI-PF3ONS	ND		2.0	0.24	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	HFPO-DA (GenX)	ND		4.0	1.5	ng/L		12/31/19 14:55	01/02/20 13:58	1	
l	11CI-PF3OUdS	ND		2.0	0.32	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.18	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20	1.9	ng/L		12/31/19 14:55	01/02/20 13:58	1	
	N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20	3.1	ng/L		12/31/19 14:55	01/02/20 13:58	1	
Т											

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	102		25 - 150	12/31/19 14:55	01/02/20 13:58	1
13C4 PFHpA	97		25 - 150	12/31/19 14:55	01/02/20 13:58	1
13C4 PFOA	95		25 - 150	12/31/19 14:55	01/02/20 13:58	1
13C5 PFNA	94		25 - 150	12/31/19 14:55	01/02/20 13:58	1
13C2 PFDA	92		25 - 150	12/31/19 14:55	01/02/20 13:58	1
13C2 PFUnA	97		25 - 150	12/31/19 14:55	01/02/20 13:58	1
13C8 FOSA	106		25 - 150	12/31/19 14:55	01/02/20 13:58	1
13C2 PFDoA	103		25 - 150	12/31/19 14:55	01/02/20 13:58	1
13C4 PFBA	100		25 - 150	12/31/19 14:55	01/02/20 13:58	1
13C2 PFTeDA	97		25 - 150	12/31/19 14:55	01/02/20 13:58	1
13C5 PFPeA	97		25 - 150	12/31/19 14:55	01/02/20 13:58	1
18O2 PFHxS	117		25 - 150	12/31/19 14:55	01/02/20 13:58	1
13C4 PFOS	117		25 - 150	12/31/19 14:55	01/02/20 13:58	1
d3-NMeFOSAA	104		25 - 150	12/31/19 14:55	01/02/20 13:58	1
d5-NEtFOSAA	103		25 - 150	12/31/19 14:55	01/02/20 13:58	1
M2-6:2 FTS	117		25 - 150	12/31/19 14:55	01/02/20 13:58	1
M2-8:2 FTS	119		25 - 150	12/31/19 14:55	01/02/20 13:58	1
13C3 HFPO-DA	76		25 - 150	12/31/19 14:55	01/02/20 13:58	1
1						

Eurofins TestAmerica, Sacramento

8

QC Sample Results

Job ID: 320-57358-1

57358-1 2 d Blank Fotal/NA 348841 *Dil Fac* 1 6 Sample

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-34	18841/1-A						Client Sam	ple ID: Method	
Matrix: Water								Prep Type: To	
Analysis Batch: 348936								Prep Batch:	34884 [,]
		MB							
Isotope Dilution	%Recovery		Limits				Prepared	Analyzed	Dil Fa
13C3 PFBS	114	! 	25 - 150				12/31/19 14:55	01/02/20 13:58	
Lab Sample ID: LCS 320-3	48841/2-A					Clie	nt Sample ID:	Lab Control S	Sample
Matrix: Water								Prep Type: To	
Analysis Batch: 348936								Prep Batch:	
-			Spike	LCS	LCS			%Rec.	
Analyte			Added	Result	Qualifier	Unit	D %Rec	Limits	
Perfluorobutanoic acid (PFBA)			40.0	43.6		ng/L	109	76 - 136	
Perfluorohexanoic acid (PFHxA)			40.0	40.0		ng/L	100	73 - 133	
Perfluoroheptanoic acid (PFHpA)			40.0	43.2		ng/L	108	72 - 132	
Perfluoropentanoic acid (PFPeA)			40.0	41.9		ng/L	105	71 ₋ 131	
Perfluorooctanoic acid (PFOA)			40.0	39.8		ng/L	100	70 - 130	
Perfluorononanoic acid (PFNA)			40.0	41.8		ng/L	105	75 ₋ 135	
Perfluorodecanoic acid (PFDA)			40.0	42.1		ng/L	105	76 ₋ 136	
Perfluoroundecanoic acid (PFUnA)			40.0	39.8		ng/L	100	68 - 128	
Perfluorododecanoic acid (PFDoA)			40.0	35.6		ng/L	89	71 - 131	
Perfluorotridecanoic acid (PFTriA)			40.0	35.1		ng/L	88	71 - 131	
Perfluorotetradecanoic acid (PFTeA)			40.0	37.8		ng/L	95	70 - 130	
Perfluorobutanesulfonic acid (PFBS)			35.4	36.5		ng/L	103	67 ₋ 127	
Perfluorohexanesulfonic acid (PFHxS)			36.4	35.8		ng/L	98	59 ₋ 119	
Perfluorooctanesulfonic acid (PFOS)			37.1	39.5		ng/L	106	70 - 130	
Perfluoroheptanesulfonic Acid (PFHpS)			38.1	39.4		ng/L	103	76 - 136	
Perfluorodecanesulfonic acid (PFDS)			38.6	38.5		ng/L	100	71 - 131	
Perfluorooctanesulfonamide (FOSA)			40.0	39.2		ng/L	98	73 - 133	
6:2 FTS			37.9	39.2		ng/L	103	59 - 175 75 - 125	
B:2 FTS			38.3	39.7		ng/L	104	75 - 135	
9CI-PF3ONS			37.3	37.3		ng/L	100	75 - 135	
HFPO-DA (GenX)			40.0	41.1		ng/L	103	51 - 173	
11CI-PF3OUdS			37.7	36.8		ng/L	98	54 - 114	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	LCS LC	c	37.7	35.3		ng/L	94	79 - 139	
Isotope Dilution	%Recovery Qu		Limits						
13C2 PFHxA	102		25 - 150						
13C4 PFHpA	93		25 - 150						
13C4 PFOA	97		25 - 150						
13C5 PFNA	96		25 - 150						
13C2 PFDA	97		25 - 150						
13C2 PFUnA	95		25 - 150						
13C8 FOSA	106		25 - 150						
13C2 PFDoA	108		25 - 150						
13C4 PFBA	108		25 - 150						

Prep Type: Total/NA

Prep Batch: 348841

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample	ID: LCS	320-34884	1/2-A

Matrix: Water Analysis Batch: 348936

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFTeDA	100		25 - 150
13C5 PFPeA	97		25 - 150
18O2 PFHxS	117		25 - 150
13C4 PFOS	118		25 - 150
d3-NMeFOSAA	103		25 - 150
d5-NEtFOSAA	101		25 - 150
M2-6:2 FTS	117		25 - 150
M2-8:2 FTS	116		25 - 150
13C3 HFPO-DA	89		25 - 150
13C3 PFBS	115		25 - 150

Lab Sample ID: LCSD 320-348841/3-A Matrix: Water Analysis Batch: 348936

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Analysis Batch: 348936	Spike	LCSD	LCSD				Prep Ba %Rec.	atch: 34	48841 RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	40.0	42.6		ng/L		107	76 - 136	2	30
Perfluorohexanoic acid (PFHxA)	40.0	42.7		ng/L		107	73 - 133	6	30
Perfluoroheptanoic acid (PFHpA)	40.0	39.0		ng/L		98	72 - 132	10	30
Perfluoropentanoic acid (PFPeA)	40.0	40.3		ng/L		101	71 - 131	4	30
Perfluorooctanoic acid (PFOA)	40.0	39.0		ng/L		97	70 - 130	2	30
Perfluorononanoic acid (PFNA)	40.0	43.2		ng/L		108	75 - 135	3	30
Perfluorodecanoic acid (PFDA)	40.0	39.1		ng/L		98	76 - 136	7	30
Perfluoroundecanoic acid (PFUnA)	40.0	40.9		ng/L		102	68 - 128	3	30
Perfluorododecanoic acid (PFDoA)	40.0	38.6		ng/L		96	71 - 131	8	30
Perfluorotridecanoic acid (PFTriA)	40.0	41.2		ng/L		103	71 - 131	16	30
Perfluorotetradecanoic acid (PFTeA)	40.0	41.1		ng/L		103	70 - 130	8	30
Perfluorobutanesulfonic acid (PFBS)	35.4	36.6		ng/L		104	67 - 127	0	30
Perfluorohexanesulfonic acid (PFHxS)	36.4	36.4		ng/L		100	59 - 119	2	30
Perfluorooctanesulfonic acid (PFOS)	37.1	38.5		ng/L		104	70 - 130	2	30
Perfluoroheptanesulfonic Acid (PFHpS)	38.1	38.6		ng/L		101	76 - 136	2	30
Perfluorodecanesulfonic acid (PFDS)	38.6	38.5		ng/L		100	71 - 131	0	30
Perfluorooctanesulfonamide (FOSA)	40.0	39.7		ng/L		99	73 - 133	1	30
6:2 FTS	37.9	38.8		ng/L		102	59 ₋ 175	1	30
8:2 FTS	38.3	39.1		ng/L		102	75 - 135	1	30
9CI-PF3ONS	37.3	36.8		ng/L		99	75 - 135	1	30
HFPO-DA (GenX)	40.0	38.8		ng/L		97	51 - 173	6	30
11CI-PF3OUdS	37.7	36.3		ng/L		96	54 - 114	1	30
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	37.7	34.9		ng/L		93	79 - 139	1	30

Eurofins TestAmerica, Sacramento

QC Sample Results

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	93		25 - 150
13C4 PFHpA	102		25 - 150
13C4 PFOA	95		25 - 150
13C5 PFNA	88		25 - 150
13C2 PFDA	95		25 - 150
13C2 PFUnA	91		25 - 150
13C8 FOSA	103		25 - 150
13C2 PFDoA	99		25 - 150
13C4 PFBA	110		25 - 150
13C2 PFTeDA	92		25 - 150
13C5 PFPeA	99		25 - 150
18O2 PFHxS	114		25 - 150
13C4 PFOS	119		25 - 150
d3-NMeFOSAA	100		25 - 150
d5-NEtFOSAA	99		25 - 150
M2-6:2 FTS	120		25 - 150
M2-8:2 FTS	120		25 - 150
13C3 HFPO-DA	90		25 - 150
13C3 PFBS	116		25 - 150

348841

348841

LCMS

Prep Batch: 348841

LCS 320-348841/2-A

LCSD 320-348841/3-A

Lab Control Sample

Lab Control Sample Dup

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-57358-1	MW-1903-20	Total/NA	Water	3535	
MB 320-348841/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-348841/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-348841/3-A	Lab Control Sample Dup	Total/NA	Water	3535	
nalysis Batch: 348	336 Client Sample ID	Bron Type	Matrix	Method	Prep Batcl
Lab Sample ID	·	Prep Type			
320-57358-1	MW-1903-20	Total/NA	Water	537 (modified)	34884

Total/NA

Total/NA

Water

Water

537 (modified)

537 (modified)

Lab Sample ID: 320-57358-1 Matrix: Water

Matrix:	Water

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			274.7 mL	10.00 mL	348841	12/31/19 14:55	JER	TAL SAC
Total/NA	Analysis	537 (modified)		1			348936	01/02/20 14:22	S1M	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

1/21/2020 (Rev. 1)

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Project/Site: FAI Plume stop

Job ID: 320-57358-1

1 2 3 4 5 6 7 8 9 10 11 12

Laboratory: Eurofins Te	∋stAmerica, Sacı	ramento
All accreditations/certifications held by	y this laboratory are listed.	Not all accreditations/certifications are applicable to this report.

Authority Program Identification Number **Expiration Date** Alaska (UST) State 17-020 01-20-21 ANAB Dept. of Defense ELAP L2468 01-20-21 ANAB Dept. of Energy L2468.01 01-20-21 ISO/IEC 17025 ANAB L2468 01-20-21 Arizona State AZ0708 08-11-20 Arkansas DEQ State 19-042-0 06-17-20 California State 2897 01-31-20 * Colorado State CA0004 08-31-20 Connecticut State PH-0691 06-30-21 Florida NELAP E87570 06-30-20 Georgia 4040 01-29-20 * State Hawaii 01-29-20 * State <cert No.> Illinois NELAP 200060 03-17-20 Kansas NELAP E-10375 10-31-20 * Louisiana NELAP 01944 06-30-20 Maine State 2018009 04-14-20 Michigan State 9947 01-29-20 * Michigan State Program 9947 01-31-20 Nevada State CA000442020-1 07-31-20 New Hampshire NELAP 2997 04-18-20 New Jersey NELAP CA005 06-30-20 New York NELAP 11666 04-01-20 Oregon NELAP 01-29-20 * 4040 Pennsylvania NELAP 68-01272 03-31-20 NELAP T104704399-19-13 05-31-20 Texas US Fish & Wildlife 58448 **US Federal Programs** 07-31-20 USDA **US Federal Programs** P330-18-00239 07-31-21 Utah NELAP CA000442019-01 02-29-20 Vermont State VT-4040 04-16-20 Virginia NELAP 460278 03-14-20 Washington State C581 05-05-20 West Virginia (DW) State 9930C 12-31-19 * Wyoming 01-28-19 * State Program 8TMS-L

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Shannon & Wilson, Inc Project/Site: FAI Plume stop

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

1/21/2020 (Rev. 1)

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: FAI Plume stop

Lab Sample ID Client Sample ID Matrix Conected Received Asset ID 320-57358-1 MW-1903-20 Water 12/17/19 13:35 12/27/19 08:45 455	Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
320-57358-1 MW-1903-20 Water 12/17/19 13:35 12/27/19 08:45					Received	Asset ID
	320-57358-1	MW-1903-20	Water	12/17/19 13:35	12/27/19 08:45	

Eurofins TestAmerica, Sacramento

Laboratory <u>Test America</u> Attn: <u>Drund Michaer</u> Mattive if used)	Lot With the sconie of sco	320-57358 Chain of Custody 2. Reliquished By: 3.	Signature: Time:		Signature: Time:	Printed Name: Date:	Company:	No. 411478
La At At (include preserv		320-57358 Cr Reliquished By: 2.		513	Signatures In Time: 845	3 Printed Name: Date: 12127/14 Sq ra h 7 lowp 5 cm		
CHAIN-OF-CUSTODY RECOR	No Date Sampled 12/17/1/15 12/17/15 12/17/15 22/20	Reliquished By: 1.	Signature: 1440 Mill of Self Time: 1440 Printed Name: Date: 12/18 Marcy Nudel Date: 12/18	14W1/50	Signature: Time: \$:20 m	Printed Name: Date: 12/23/19 Sorth	Company: REGENESIS	
	Quote No: J-Flags: Y es No Lab No. Time Sa 13355 124 13325 124 13325 124	Sample Receipt	Total No. of Containers: L4 COC Seals/Intact? Y/N/NA Received Good Cond /Cold Temp:	Delivery Method: UPS Notes:	Hacked		Distribution: White - w/shipment - returned to Shannon & Wilson w/ laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - job file	
Edit SHANNON & MILSON, INC. 2355 Hill Road Faitbarks, AK 99709 (907) 479-0600 www.shannonwilson.com	Turn Around Time:	Project Information	Number: 102519-005 Name: F171 PIVAUTAD Contact: Marcy Nacole Ongoing Project? Yes No	Sampler: PLW, ACF	PFAS x 23 See at	Sent to Regnesis for fitterion	Distribution: White - w/shipment - returne Yellow - w/shipment - for cor Pink - Shannon & Wilson - jo	

Δ

Client: Shannon & Wilson, Inc

Login Number: 57358 List Number: 1 Creator: Her, David A

Question	A	Commont
Question	Answer –	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seal present with no number.
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-57358-1

List Source: Eurofins TestAmerica, Sacramento

Laboratory Data Review Checklist

Completed By:

Brittany Blood

Title:

Environmental Professional I

Date:

1/21/2020

Consultant Firm:

Shannon and Wilson, Inc.

Laboratory Name:

Eurofins/TestAmerica

Laboratory Report Number:

320-57358-1 REV1

Laboratory Report Date:

1/21/2020

CS Site Name:

Fairbanks Fire Training Pit

ADEC File Number:

100.38.277

Hazard Identification Number:

26816

Laboratory Report Date:

1/21/2020

CS Site Name:

Fairbanks Fire Training Pit

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

Yes \boxtimes No \square N/A \square Comments:

The ADEC certified the TestAmerica/Eurofins Laboratories West Sacramento, CA location for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018. These compounds were included in the ADEC's Contaminated Sites Laboratory Approval 17-020.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes \square No \square N/A \boxtimes Comments:

Samples were not transferred to another laboratory.

- 2. Chain of Custody (CoC)
 - a. CoC information completed, signed, and dated (including released/received by)?

Yes \boxtimes No \square N/A \square Comments:

b. Correct analyses requested?

Yes \boxtimes No \square N/A \square Comments:

3. <u>Laboratory Sample Receipt Documentation</u>

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes \boxtimes No \square N/A \square Comments:

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \square No \square N/A \boxtimes Comments:

Analysis of PFAS compounds does not require chemical preservation.

Laboratory Report Date:

1/21/2020

CS Site Name:

Fairbanks Fire Training Pit

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

The sample receipt form notes that the samples were received in good condition.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \square No \square N/A \boxtimes Comments:

There were no discrepancies noted in this work order.

e. Data quality or usability affected?

Comments:

Data quality and or usability are not affected; see above.

- 4. Case Narrative
 - a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/21/2020

CS Site Name:

Fairbanks Fire Training Pit

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

The "I" qualifier means the transition mass ratio for the indicated analytes were outside of the established ratio limits. The qualitative identification of the analytes has some degree of uncertainty. However, analyst judgment was used to positively identify the analytes. Therefore, the PFOS result in project sample *MW-1903-20* was qualified "J*".

Method 537 (modified): The Isotope Dilution Analyte (IDA) recovery of 13C2 PFTeDA associated with the following sample is below the method recommended limit: *MW-1903-20*. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-348841.

Sample *MW-1903-20* dark amber in color, clear and slightly viscous and the sample extract is amber colored.

MW-1903-20 was fortified with IDA, centrifuged and decanted prior to solid-phase extraction.

The laboratory report was revised to include analytical data for N-ethylperfluorooctane sulfonamidoacetic acid (NEtFOSAA) and N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA), for a total of 25 PFAS analytes.

c. Were all corrective actions documented?

Yes \boxtimes No \square N/A \square Comments:

See above.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

There is no affect on data quality and/or usability; see above.

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/21/2020

CS Site Name:

Fairbanks Fire Training Pit

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

All samples in this work order had a water matrix.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \boxtimes No \square N/A \square Comments:

e. Data quality or usability affected?

Data quality and/or usability were not affected; see above.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

The results for Method Blank 320-348841/1-A were all less than the reporting limit for PFAS. However, PFBA and PFHxS were detected above the method detection limit but less than the reporting limit.

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

Project sample MW-1903-20 was affected.

Laboratory Report Date:

1/21/2020

CS Site Name:

Fairbanks Fire Training Pit

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \boxtimes No \square N/A \square Comments:

PFBA and PFHxS results for sample *MW-1903-20* were qualified B* at the LOQ and are considered not detected due to sample-contamination identified in the blank.

v. Data quality or usability affected?

Comments:

Data quality and or usability was not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

N/A; metals and/or inorganics were not analyzed as part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/21/2020

CS Site Name:

Fairbanks Fire Training Pit

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

No samples were affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

Qualification of the data was not necessary; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability was not affected.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes \square No \boxtimes N/A \square Comments:

Insufficient sample volume was available to perform a MS/MSD with the associated preparatory batch.

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

N/A; metals and/or inorganics were not analyzed as a part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \boxtimes Comments:

See above.

Laboratory Report Date:

1/21/2020

CS Site Name:

Fairbanks Fire Training Pit

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \boxtimes Comments:

See above.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Not applicable, see above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and/or usability was not affected.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes \square No \boxtimes N/A \square Comments:

The IDA recovery for PFTeDA was below the laboratory limits

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

PFTeA was not detected in the associated project sample, therefore the non-detect PFTeA result in sample *MW-1903-20* was qualified J*.

Laboratory Report Date:

1/21/2020

CS Site Name:

Fairbanks Fire Training Pit

iv. Data quality or usability affected?

Comments:

See above.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \square No \square N/A \boxtimes Comments:

PFAS are not volatile compounds; therefore, a trip blank is not required.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \square No \square N/A \boxtimes Comments:

N/A; a trip blank is not required.

iii. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

No samples were affected.

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

No samples were affected.

v. Data quality or usability affected?

Comments:

Data quality and/or usability were not affected; see above.

f. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \square No \square N/A \boxtimes Comments:

A field-duplicate was not collected for the samples submitted in this work order. However, fieldduplicate samples are submitted at the appropriate frequency for the overall project.

Laboratory Report Date:

1/21/2020

CS Site Name:

Fairbanks Fire Training Pit

ii. Submitted blind to lab?

Yes \square No \square N/A \boxtimes Comments:

See above.

 iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1-R_2) = ((R_1-R_2)/2) \times 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \square No \square N/A \boxtimes Comments:

See above.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

Data quality and/or usability are not affected; see above.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \boxtimes No \square N/A \square Comments:

An equipment blank sample was not collected. Equipment blanks will be submitted at the proper frequency for the project as a whole.

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

See above.

ii. If above LOQ or project specified objectives, what samples are affected?

Comments:

Not applicable.

iii. Data quality or usability affected?

Comments:

Data quality and/or usability not affected.

Laboratory Report Date:

1/21/2020

CS Site Name:

Fairbanks Fire Training Pit

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes⊠ No	\square N/A \square	Comments:
---------	-------------------------	-----------

See 4b, above.

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks 2355 Hill Rd Fairbanks, AK 99707 (907)479-0600

Report Number: 1209671

Client Project: 102519 FAI

Dear Mary Nadel,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins Project Manager Jennifer.Dawkins@sgs.com Date

Print Date: 10/13/2020 5:02:30PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks SGS Project: 1209671 Project Name/Site: 102519 FAI Project Contact: Mary Nadel

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 10/13/2020 5:02:31PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
o	
	nclude a result for "Total Solids" have already been adjusted for moisture content.
All DRO/RRO analyses are	integrated per SOP.

Print Date: 10/13/2020 5:02:34PM

Note:

Sample Summary

Client Sample ID MW-1903-20 MW-2903-20

<u>Method</u> SM 5310B EP200.8 SM 5310B 1209671001 1209671002

Lab Sample ID

 Collected
 Received

 09/17/2020
 09/18/2020

 09/17/2020
 09/18/2020

<u>Matrix</u> Water (Surface, Eff., Ground) Water (Surface, Eff., Ground)

<u>Method Description</u> Dissolved Organic Carbon Metals in Water by 200.8 ICP-MS Total Organic Carbon

Print Date: 10/13/2020 5:02:35PM

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: MW-1903-20			
Lab Sample ID: 1209671001	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Calcium	99400	ug/L
	Magnesium	25100	ug/L
Waters Department	Total Organic Carbon	39400	ug/L
	Total Organic Carbon, Dissolved	24600	ug/L
Client Sample ID: MW-2903-20			
Lab Sample ID: 1209671002	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Metals by ICP/MS	Calcium	94200	ug/L
	Magnesium	24200	ug/L
Waters Department	Total Organic Carbon	43800	ug/L
	Total Organic Carbon, Dissolved	21400	ug/L

Print Date: 10/13/2020 5:02:37PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-1903-20 Client Project ID: 102519 FAI Lab Sample ID: 1209671001 Lab Project ID: 1209671		R M S	Collection Date: 09/17/20 13:15 Received Date: 09/18/20 08:54 Matrix: Water (Surface, Eff., Grour Solids (%): .ocation:				
Results by Metals by ICP/MS			_				
<u>Parameter</u> Calcium	<u>Result Qual</u> 99400	<u>LOQ/CL</u> 25000	<u>DL</u> 7500	<u>Units</u> ug/L	<u>DF</u> 10	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 10/12/20 16:18
Magnesium	25100	2500	750	ug/L	10		10/12/20 16:18
Batch Information Analytical Batch: MMS10913 Analytical Method: EP200.8 Analyst: DMM Analytical Date/Time: 10/12/20 16:18 Container ID: 1209671001-A		I	Prep Methoo Prep Date/Ti Prep Initial V	MXX33682 I: E200.2 Ime: 09/30/2 Vt./Vol.: 4 m Vol: 50 mL	L		

Print Date: 10/13/2020 5:02:38PM

J flagging is activated

SGS	

Results of MW-1903-20 Client Sample ID: MW-1903-20 Client Project ID: 102519 FAI Lab Sample ID: 1209671001 Lab Project ID: 1209671		R M Se	Collection Date: 09/17/20 13:15 Received Date: 09/18/20 08:54 Matrix: Water (Surface, Eff., Grou Solids (%): Location:				
Results by Waters Department	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DE	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Total Organic Carbon Total Organic Carbon,Dissolved	39400 24600	1000 1000	400 400	ug/L ug/L	1 1		09/22/20 01:13 09/22/20 01:30
Batch Information							
Analytical Batch: WTC3036 Analytical Method: SM 5310B Analyst: EWW Analytical Date/Time: 09/22/20 01:13 Container ID: 1209671001-B							
Analytical Batch: WTC3036 Analytical Method: SM 5310B Analyst: EWW Analytical Date/Time: 09/22/20 01:30 Container ID: 1209671001-C							
int Date: 10/13/2020 5:02:38PM						.l flaqqin	g is activated

Client Sample ID: MW-2903-20 Client Project ID: 102519 FAI Lab Sample ID: 1209671002 Lab Project ID: 1209671		Ri M Se	ollection Da aceived Da atrix: Wate olids (%): ocation:				
Results by Metals by ICP/MS			_				
Parameter	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Calcium	94200	25000	7500	ug/L	10		10/12/20 16:21
Magnesium	24200	2500	750	ug/L	10		10/12/20 16:21
Batch Information							
Analytical Batch: MMS10913				MXX33682			
Analytical Method: EP200.8			Prep Method				
Analyst: DMM				ime: 09/30/2			
Analytical Date/Time: 10/12/20 16:21		Prep Initial Wt./Vol.: 4 mL					
Container ID: 1209671002-A		F	Prep Extract	Vol: 50 mL			

Print Date: 10/13/2020 5:02:38PM

J flagging is activated

Results of MW-2903-20							
Client Sample ID: MW-2903-20 Client Project ID: 102519 FAI Lab Sample ID: 1209671002 Lab Project ID: 1209671		Collection Date: 09/ Received Date: 09/1 Matrix: Water (Surfac Solids (%): Location:			20 08:54		
Results by Waters Department) —				
<u>Parameter</u> Total Organic Carbon Total Organic Carbon,Dissolved	<u>Result Qual</u> 43800 21400	<u>LOQ/CL</u> 1000 1000	<u>DL</u> 400 400	<u>Units</u> ug/L ug/L	<u>DF</u> 1 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 09/22/20 01:48 09/22/20 02:33
Batch Information							
Analytical Batch: WTC3036 Analytical Method: SM 5310B Analytical Date/Time: 09/22/20 01:48 Container ID: 1209671002-B Analytical Batch: WTC3036 Analytical Method: SM 5310B Analyst: EWW Analytical Date/Time: 09/22/20 02:33 Container ID: 1209671002-C							
int Date: 10/13/2020 5:02:38PM							g is activated

QC for Samples: 209671001, 12096710	02				
Results by EP200.8					
Parameter	Results	LOQ/CL	DL	<u>Units</u>	
Calcium Magnesium	250U 25.0U	500 50.0	150 15.0	ug/L ug/L	
Analytical Batch: MN Analytical Method: E			itch: MXX33682 ethod: E200.2	2	
Instrument: Perkin E Analyst: DMM	Imer NexIon P5		te/Time: 9/30/2 tial Wt./Vol.: 20	020 12:35:16PM	
5	: 10/12/2020 2:27:02PM		tract Vol: 50 mL		

Print Date: 10/13/2020 5:02:40PM

Blank Spike Di. LCS for HBN 1209671 [MXX33682] Blank Spike Lab Di: 1548421 Date Analyzed: 10/12/2020 14:30 Matrix: Water (Surface, Eff., Ground) CC for Samples: 1209671001, 1209671002 Results by EP200.8 Blank Spike (ug/L) Parameter Spike Result Rec.(26) CL Calcium 10000 10600 106 (85-115) Magnesium 10000 11300 113 (85-115) Batch Information Analytical Batch: MMS10913 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexton P5 Analyse: DMM Prep Batch: MXX33682 Prep Date/Time: 0930/2020 12:36 Spike Int WL/Vol.: Extract Vol: 50 mL Dupe Init WL/Vol.: Extract Vol: 50 mL			
Blank Spike Lab ID: 1584621 Date Analyzed: 10/12/2020 14:30 Matrix: Water (Surface, Eff., Ground) QC for Samples: 1209671001, 1209671002 Results by EP200.8 Blank Spike (ug/L) Parameter Spike Calcium 10000 106 10000 11300 113 Batch Information (85-115) Analytical Batch: MMS10913 Prep Batch: MXX33682 Analytical Method: EP200.8 Prep Method: E200.2 Instrument: Perkin Elmer Nexion P5 Prep Date/Time: 09/30/2020 12:35 Analyst: DMM Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL	Blank Spike Summary		
QC for Samples: 1209671001, 1209671002 Results by EP200.8 Blank Spike (ug/L) Parameter Spike Result Rec (%) CL Calcium 10000 10600 106 (85-115) Magnesium 10000 11300 113 (85-115) Batch Information Prep Batch: MXX33682 Analytical Batch: MMS10913 Analytical Method: Prep Date: MXX33682 Instrument: Perkin Elmer NexIon P5 Analyst: Prep Date/Time: 09/30/2020 12:35 Spike Init Wt./Vol.: 10000 ug/L	Blank Spike Lab ID: 1584621	MXX33682]	Matrix: Water (Surface, Eff., Ground)
Blank Spike (ug/L) Parameter Spike Result Rec (%) CL Calcium 10000 10600 106 (85-115) Magnesium 10000 11300 113 (85-115) Batch Information Prep Batch: MXX33682 Prep Method: E200.2 Instrument: Perkin Elmer NexIon P5 Prep Date/Time: 09/30/2020 12:35 Analyst: DMM Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL	QC for Samples: 1209671001, 120967	1002	
Blank Spike (ug/L) Parameter Spike Result Rec (%) CL Calcium 10000 10600 106 (85-115) Magnesium 10000 11300 113 (85-115) Batch Information Prep Batch: MXX33682 Prep Method: E200.2 Instrument: Perkin Elmer Nexlon P5 Prep Date/Time: 09/30/2020 12:35 Analyst: DMM Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL	Results by EP200.8		
Parameter Spike Result Rec (%) CL Calcium 10000 10600 106 (85-115) Magnesium 10000 11300 113 (85-115) Batch Information Prep Batch: MXX33682 Prep Method: E200.2 Analytical Batch: Prep Keindo: Prep Date/Time: 09/30/2020 12:35 Analyst: DMM Spike Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL		Blank Spike (ug/L)	
Magnesium 1000 1130 113 (85-115) Batch Information Analytical Batch: MMS10913 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5 Analyst: DMM Prep Batch: MXX33682 Prep Method: E200.2 Prep Date/Time: 09/30/2020 12:35 Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL			<u>CL</u>
Batch Information Analytical Batch: MMS10913 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5 Analyst: DMM Prep Date/Time: 09/30/2020 12:35 Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL	Calcium 10000	10600 106	(85-115)
Analytical Batch:MMS10913Prep Batch:MXX33682Analytical Method:EP200.8Prep Method:E200.2Instrument:Perkin Elmer Nexlon P5Prep Date/Time:09/30/202012:35Analyst:DMMSpike Init Wt./Vol.:10000 ug/LExtract Vol:50 mL	Magnesium 10000	11300 113	(85-115)
Analytical Method:EP200.8Prep Method:E200.2Instrument:Perep Date/Time:09/30/202012:35Analyst:DMMSpike Init Wt./Vol.:10000 ug/LExtract Vol:50 mL	Batch Information		
	Analytical Method: EP200.8 Instrument: Perkin Elmer NexIon P5		Prep Method: E200.2 Prep Date/Time: 09/30/2020 12:35 Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL

Print Date: 10/13/2020 5:02:43PM

Matrix Spike Summary Original Sample ID: 1584623 Analysis Date: 10/12/2020 14:33 MS Sample ID: 1584624 MS Analysis Date: 10/12/2020 14:35 MSD Sample ID: Analysis Date: Matrix: Water (Surface, Eff., Ground) QC for Samples: 1209671001, 1209671002 Results by EP200.8 Matrix Spike (ug/L) Spike Duplicate (ug/L) Parameter Sample Spike Result Rec (%) <u>Spike</u> Result Rec (%) CL RPD (%) RPD CL Calcium 45900 102 70-130 10000 56100 8400 108 70-130 Magnesium 10000 19200 **Batch Information** Analytical Batch: MMS10913 Prep Batch: MXX33682 Analytical Method: EP200.8 Prep Method: DW Digest for Metals on ICP-MS Instrument: Perkin Elmer Nexlon P5 Prep Date/Time: 9/30/2020 12:35:16PM Analyst: DMM Prep Initial Wt./Vol.: 20.00mL Analytical Date/Time: 10/12/2020 2:35:59PM Prep Extract Vol: 50.00mL

Print Date: 10/13/2020 5:02:44PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

		1				
Method Blank Blank ID: MB for HBN 1811995 [WTC/3036] Blank Lab ID: 1582649						
		Matrix: Water (Surface, Eff., Ground)				
QC for Samples: 1209671001, 1209671002						
Results by SM 5310B	Results by SM 5310B					
<u>Parameter</u> Total Organic Carbon	<u>Results</u> 500U	<u>LOQ/CL</u> 1000	<u>DL</u> 400	<u>Units</u> ug/L		
Batch Information						
Analytical Batch: WTC30 Analytical Method: SM 5 Instrument: TOC Analyz Analyst: EWW Analytical Date/Time: 9/2	310B er 2					

Print Date: 10/13/2020 5:02:46PM

SGS	

I				
Blank Spike Summary				
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1582648 Date Analyzed: 09/21/2020	3	NTC3036]	Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1209671	001, 120967 ⁻	1002		
Results by SM 5310B				
	E	Blank Spike	(ug/L)	
<u>Parameter</u>	Spike	Result	Rec (%)	CL
Total Organic Carbon	75000	76400	102	(80-120)
Datable formulation				
Batch Information				
Analytical Batch: WTC3036 Analytical Method: SM 5310B Instrument: TOC Analyzer 2 Analyst: EWW				
Driet Deter 40/40/0000 5 00 4000				
Print Date: 10/13/2020 5:02:48PM				

SGS	

Matrix Spike Summary											
Original Sample ID: 1204837001 MS Sample ID: 1582644 MS MSD Sample ID: 1582645 MSD				Analysis Date: 09/21/2020 17:39 Analysis Date: 09/21/2020 17:57 Analysis Date: 09/21/2020 18:15 Matrix: Drinking Water							
QC for Samples:											
Results by SM 5310B			_								
			trix Spike	x Spike (ug/L) Spike Duplicate (ug/L)							
<u>Parameter</u> Total Organic Carbon	<u>Sample</u> 4780	<u>Spike</u> 10000	<u>Result</u> 13200	<u>Rec (%)</u> 85	<u>Spike</u> 10000	<u>Result</u> 13400	<u>Rec (%)</u> 86	<u>CL</u> 75-125	<u>RPD (%)</u> 1.40	<u>RPD CL</u> (< 25)	
Batch Information											
Analytical Batch: WTC30 Analytical Method: SM 53 Instrument: TOC Analyze Analyst: EWW Analytical Date/Time: 9/2	310B er 2	PM									
Print Date: 10/13/2020 5:02:50P	PM										

l										
Matrix Spike Summary										
Original Sample ID: 1205001001 MS Sample ID: 1582650 MS MSD Sample ID: 1582651 MSD			Analysis Date: 09/21/2020 20:59 Analysis Date: 09/21/2020 21:15 Analysis Date: 09/21/2020 21:32 Matrix: Drinking Water							
QC for Samples: 120967	71001, 1209671002	2				-				
Results by SM 5310B										
				Spike (ug/L) Spike Duplicate (ug/L)						
<u>Parameter</u> Total Organic Carbon	<u>Sample</u> 1000U	<u>Spike</u> 10000	<u>Result</u> 9780	<u>Rec (%)</u> 98	<u>Spike</u> 10000	<u>Result</u> 10100	<u>Rec (%)</u> 101	<u>CL</u> 75-125	<u>RPD (%)</u> 3.50	<u>RPD CL</u> (< 25)
Batch Information										
Analytical Batch: WTC30 Analytical Method: SM 5 Instrument: TOC Analyz Analyst: EWW	310B er 2									
Analytical Date/Time: 9/2	21/2020 9:15:15P	Μ								
Print Date: 10/13/2020 5:02:50F	PM									

SGS North America Inc.

Laboratory SGS Page 1 of 1 Attn: Jon Dow Lins Brative if used	5 dound water	Ime: Holined By: Time: Signature: Time: Time: Date: Printed Name Date: Date: Date: Printed Name Date: Signature: Time: Signature: Time: Signature: Time: Signature: Date: Printed Name: Date: Stor, IF, IS Stor, IF, IS Company:	No. 31915
1209671 1209671 Analysis Parameters/ Analysis Parameters/ Anal		Signature: Belinerutshe Company Signature: Printed Name: Company: Company:	A# 350732 20
DN, INC. I Consultants Center Drive 33146-3564 Street, Suite 3 s Street, Suite 3 et, Suite 1024 et, Suite 1024 Date Lab No. Time Sampled	AD 1315 911120 2 AD 1305 9117120	Sample Receipt Imber of Containers A eals/Intact? Y/N/NA ed Good Cond./Cold 5,3 Method: hipping bill, if any) hipping bill, if any)	
AnnualShannon & MLSON, INC.Geotechnical and Environmental Consultants400 N. 34th Street, Suite 1002043 Westport Center Drive400 N. 34th Street, Suite 1002065 632-80202065 632-80202065 632-80202065 632-80202065 632-80202065 632-80202065 632-80202073 479-06002255 S.W. Canyon Road2255 S.W. Canyon Road2255 S.W. Canyon Road2255 S.W. Canyon Road2255 S.W. Canyon Road203) 223-6147203) 223-6147Sample IdentityLab No.	M-1905-2021-WH	Proj cct Nu cct Na act: act: bing P bler: ial Ins	F-19-91/UR

e-Sample Receipt Form

000	e-Sam <u>r</u>	ole Receip	t Form			
SGS	SGS Workorder #:	1	209	671	1 2	0 9 6 7 1
	Review Criteria	Condition (Yes	, No, N/A	E	xceptions Note	ed below
<u>Chai</u>	in of Custody / Temperature Require			N/A Exemption	permitted if sampl	er hand carries/delivers.
	Were Custody Seals intact? Note # & I	location Yes	1F, 1B			
	COC accompanied sa	mples? Yes				
DOD: We	ere samples received in COC corresponding c	oolers? N/A				
	N/A **Exemption permitted if			ours ago, or for		
Temp	erature blank compliant* (i.e., 0-6 °C afte	er CF)? Yes	Cooler II	<mark>):</mark> 1	@	2.6 °C Therm. ID: D50
			Cooler II	<mark>D:</mark>	@	°C Therm. ID:
	out a temperature blank, the "cooler temperature" will LER TEMP" will be noted to the right. "ambient" or "ch		Cooler II	<mark>D:</mark>	@	°C Therm. ID:
	be noted if neither is available.		Cooler II	<mark>D:</mark>	@	°C Therm. ID:
			Cooler II	<mark>D:</mark>	@	°C Therm. ID:
*/	If >6°C, were samples collected <8 hours	ago? N/A				
	If <0°C, were sample containers ice	free? N/A				
Note: Identify con	tainers received at non-compliant temper Use form FS-0029 if more space is n					
Holding Time	e / Documentation / Sample Condition Re	quirements	Note: Refe	r to form F-083 "Sa	ample Guide" for spec	ific holding times.
	Were samples received within holding	time? Yes				
Do samples match	COC** (i.e., sample IDs, dates/times colle	ected)? Yes				
**Note: If time	s differ <1hr, record details & login per C	OC.	T			
**Note: If sample information	on containers differs from COC, SGS will default to C	COC information	ר			
	sts clear? (i.e., method is specified for an n multiple option for analysis (Ex: BTEX, N					
				Yes ***Exempt	ion permitted for m	etals (e.g,200.8/6020A).
Were proper conta	ainers (type/mass/volume/preservative***))used? Yes	1		•	
	Volatile / LL-Hg Req	uirements				
Were Trip Bla	nks (i.e., VOAs, LL-Hg) in cooler with sar					
-	vials free of headspace (i.e., bubbles ≤ 0					
Were	e all soil VOAs field extracted with MeOH	+BFB? N/A				
Note to	Client: Any "No", answer above indicates not	n-compliance	with stand	lard procedures	and may impact da	ata quality.
	Additiona	l notes (if a	applicabl	e):		

e-Sample<u>Receipt Form FBK</u>

000

SGS	SGS Workorder #:	120967		71	1:	20967	1
Review Crite	eria	Condition (Yes,	No, N/A	Exce	ptions Not	ed below	
Chain of Custody	/ Temperature Requi	rements	Ye	s Exemption per	mitted if samp	ler hand carries	s/delivers.
Were Cust	tody Seals intact? Note # &	location N/A					
	COC accompanied sa	amples? Yes					
DOD: Were samples rece	ived in COC corresponding of						
	**Exemption permitted if			s ago, or for sam	ples where chi		
Temperature blank co	ompliant* (i.e., 0-6 °C afte	er CF)? Yes	Cooler ID:	1	@	5.8 °C Therr	
			Cooler ID:		@	°C Therr	n. ID:
If samples received without a temperature bl documented instead & "COOLER TEMP" will be n			Cooler ID:		@	°C Therr	n. ID:
be noted if neither is	0		Cooler ID:		@	°C Therr	n. ID:
*If >6°C, were sa	amples collected <8 hours	s ago?					
lf <0°C, w	ere sample containers ice	e free?					
Note: Identify containers received Use form FS	d at non-compliant tempe S-0029 if more space is n						
Holding Time / Documentati	on / Sample Condition R	equirements	Note: Refer t	to form F-083 "Sa	ample Guide" I	for specific hold	ding times.
Do samples match COC** (i.e.,sar					·	i	
**Note: If times differ <1hr, re-	cord details & login per C	OC.					
***Note: If sample information on containers differ	s from COC, SGS will default to (COC information					
Were samples in good condit Were analytical requests clear? (i.e., with multiple option		nalyses					
	eadspace (i.e., bubbles ≤ ield extracted with MeOH	6mm)? N/A +BFB? N/A					
For Rush/Short Hold Time, v	vas RUSH/Short HT emai	il sent? N/A					
Note to Client: Any "No"	, answer above indicates no	n-compliance	with standard	procedures and	may impact d	ata quality.	
	Additiona	al notes (if a	pplicable):				
SGS Profile #					0		

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1209671001-A	HNO3 to pH < 2	ОК			
1209671001-B	HCL to $pH < 2$	ОК			
1209671001-C	HCL to $pH < 2$	ОК			
1209671001-D	HCL to pH < 2	OK			
1209671002-A	HNO3 to pH < 2	ОК			
1209671002-B	HCL to $pH < 2$	ОК			
1209671002-C	HCL to pH < 2	OK			
1209671002-D	HCL to $pH < 2$	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

Laboratory Data Review Checklist

Completed By:

Amber Masters

Title:

Environmental Scientist

Date:

11/11/2020

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

SGS North America, Inc.

Laboratory Report Number:

1209671

Laboratory Report Date:

10/14/2020

CS Site Name:

Fairbanks DOT&PF PFAS

ADEC File Number:

100.38.277

Hazard Identification Number:

26816

Laboratory Report Date:

10/14/2020

CS Site Name:

Fairbanks DOT&PF PFAS

Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	Yes \boxtimes No \square N/A \square Comments:
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	YesNoN/AComments:
	All analyses were performed by SGS North America, Inc. in Anchorage, AK.
2.	Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	Yes \boxtimes No \square N/A \square Comments:
	b. Correct analyses requested?
	Yes \boxtimes No \square N/A \square Comments:
3.	Laboratory Sample Receipt Documentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	Yes \boxtimes No \square N/A \square Comments:
	Sample cooler temperature recorded at 2.6° C upon receipt at laboratory in Fairbanks, and 5.8° C upon receipt in Anchorage.

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:
10/14/2020
CS Site Name:
Fairbanks DOT&PF PFAS
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes No N/A Comments:
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missin samples, etc.?
$Yes \square No \square N/A \boxtimes Comments:$
There were no discrepancies identified in the sample receipt documentation.
e. Data quality or usability affected?
Comments:
No, see above.
4. <u>Case Narrative</u>
a. Present and understandable?
Yes \boxtimes No \square N/A \square Comments:
b. Discrepancies, errors, or QC failures identified by the lab?
Yes \square No \square N/A \boxtimes Comments:
The case narrative does not identify any discrepancies, errors, or QC failures.
c. Were all corrective actions documented?
Yes \square No \square N/A \boxtimes Comments:
See above.
d. What is the effect on data quality/usability according to the case narrative?
Comments:
Not applicable, see above.

Laboratory Report Date:

10/14/2020

CS Site Name:

Fairbanks DOT&PF PFAS

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \square No \square N/A \boxtimes Comments:

There are no applicable cleanup levels for the analytes included in this work order.

e. Data quality or usability affected?

No, see above.

6. <u>QC Samples</u>

a. Method Blank

i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
 Yes⊠ No□ N/A□ Comments:

Laboratory Report Date:

10/14/2020

CS Site Name:

Fairbanks DOT&PF PFAS

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

There were no detections in the method blank samples associated with this work order.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

v. Data quality or usability affected?

Comments:

Not applicable, see above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \square No \square N/A \boxtimes Comments:

No organic analyses were requested with this work order.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

LCS results were reported for total organic carbon analysis.

LCS results were reported for calcium and magnesium analyses.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

10/14/2020

CS Site Name:

Fairbanks DOT&PF PFAS

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \boxtimes Comments:

No LCSD samples were reported.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Percent recovery was within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Not applicable, see above.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

No organic analyses were requested with this work order.

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

MS/MSD results were reported for total organic carbon analysis.

MS results were reported for calcium and magnesium analyses.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

10/14/2020

CS Site Name:

Fairbanks DOT&PF PFAS

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes \boxtimes No \square N/A \boxtimes Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Not applicable, %Rs and RPDs were within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Not applicable, see above.

d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only

i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?

Yes \square No \square N/A \boxtimes Comments:

Surrogates are not reported for these analyses.

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes \square No \square N/A \boxtimes Comments:

See above.

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

Laboratory Report Date:

10/14/2020

CS Site Name:

Fairbanks DOT&PF PFAS

iv. Data quality or usability affected?

Comments:

Not applicable, see above.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \square No \square N/A \boxtimes Comments:

Analysis for volatile compounds was not requested with this work order. A trip blank is not required.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \square No \square N/A \boxtimes Comments:

See above.

iii. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

See above.

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

Not applicable, see above.

v. Data quality or usability affected?

Comments:

Not applicable, see above.

f. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

10/14/2020

CS Site Name:

Fairbanks DOT&PF PFAS

ii. Submitted blind to lab?

Yes \boxtimes No \square N/A \square Comments:

Field duplicate pair MW-1903-20/MW-2903-20 was submitted with this work order.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \boxtimes No \square N/A \square Comments:

Relative percent difference was within control limits.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

Not applicable, see above.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

The project samples were collected using non-reusable equipment. An equipment blank is not required.

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

See above.

ii. If above LOQ or project specified objectives, what samples are affected?

Comments:

Not applicable, see above.

iii. Data quality or usability affected?

Comments:

Not applicable, see above.

Laboratory Report Date:

10/14/2020

CS Site Name:

Fairbanks DOT&PF PFAS

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes \square No \square N/A \boxtimes Comments:

No other data flags or qualifiers needed.

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks 2355 Hill Rd Fairbanks, AK 99707 (907)479-0600

Report Number: 1209882

Client Project: 11-4-06050-656 FAI Plumestop

Dear Marcy Nadel,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins Project Manager Jennifer.Dawkins@sgs.com Date

Print Date: 01/15/2021 8:43:46AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks SGS Project: 1209882 Project Name/Site: 11-4-06050-656 FAI Plumestop Project Contact: Marcy Nadel

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 01/15/2021 8:43:47AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry & Microbiology (Provisionally Certified as of 12/03/2020 for Turbidity by SM2130B, Copper & Mercury by EPA200.8 and Trihalomethanes by EPA 524.2) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded a	allowable regulatory or control limits.
! Surrogate out of control limi	its.
B Indicates the analyte is four	nd in a blank associated with the sample.
CCV/CVA/CVB Continuing Calibration Verif	ication
CCCV/CVC/CVCA/CVCB Closing Continuing Calibrat	ion Verification
CL Control Limit	
DF Analytical Dilution Factor	
DL Detection Limit (i.e., maxim	um method detection limit)
E The analyte result is above	the calibrated range.
GT Greater Than	
IB Instrument Blank	
ICV Initial Calibration Verification	n
J The quantitation is an estim	ation.
LCS(D) Laboratory Control Spike (D	Duplicate)
LLQC/LLIQC Low Level Quantitation Che	eck
LOD Limit of Detection (i.e., 1/2 of	of the LOQ)
LOQ Limit of Quantitation (i.e., re	porting or practical quantitation limit)
LT Less Than	
MB Method Blank	
MS(D) Matrix Spike (Duplicate)	
ND Indicates the analyte is not	detected.
RPD Relative Percent Difference	
TNTC Too Numerous To Count	
U Indicates the analyte was a	nalyzed for but not detected.
Sample summaries which include a result for "Total Solie	ds" have already been adjusted for moisture content.

Print Date: 01/15/2021 8:43:50AM

Note:

Sample Summary

Collected

12/22/2020

12/22/2020

Received

12/29/2020

12/29/2020

Matrix

Water (Surface, Eff., Ground)

Water (Surface, Eff., Ground)

Client Sample ID MW-1903-20 MW-1903-20

<u>Method</u> EP200.8

SM 5310B

Method Description Metals in Water by 200.8 ICP-MS

Lab Sample ID

1209882001

1209882002

Total Organic Carbon

Print Date: 01/15/2021 8:43:52AM

Detectable Results Summary

Client Sample ID: MW-1903-20			
Lab Sample ID: 1209882001	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Calcium	103000	ug/L
	Magnesium	25500	ug/L
Waters Department	Total Organic Carbon	24600	ug/L

Print Date: 01/15/2021 8:43:53AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-1903-20							
Client Sample ID: MW-1903-20 Client Project ID: 11-4-06050-656 FAI Lab Sample ID: 1209882001 Lab Project ID: 1209882 Results by Metals by ICP/MS	Plumestop	R M S	eceived Da	ate: 12/22/ ate: 12/29/2 er (Surface,	20 09:30		
Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
Calcium	103000	2500	<u>750</u>	ug/L	1		01/07/21 12:06
Magnesium	25500	250	75.0	ug/L	1		01/07/21 12:06
Batch Information Analytical Batch: MMS10981 Analytical Method: EP200.8 Analyst: DMM Analytical Date/Time: 01/07/21 12:06 Container ID: 1209882001-A		F	Prep Methoo Prep Date/T Prep Initial V	MXX33919 d: E200.2 ime: 01/05/2 Vt./Vol.: 4 m : Vol: 50 mL			

Print Date: 01/15/2021 8:43:55AM

J flagging is activated

Member of SGS Group

Results of MW-1903-20							
Client Sample ID: MW-1903-20 Client Project ID: 11-4-06050-656 F Lab Sample ID: 1209882001 Lab Project ID: 1209882 Results by Waters Department	Al Plumestop	R M S	eceived D	0ate: 12/22/ ate: 12/29/2 er (Surface,	20 09:30		
Parameter Total Organic Carbon	<u>Result Qual</u> 24600	<u>LOQ/CL</u> 1000	<u>DL</u> 400	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 01/13/21 12:22
Batch Information Analytical Batch: WTC3058 Analytical Method: SM 5310B Analyst: EWW Analytical Date/Time: 01/13/21 12:22 Container ID: 1209882001-B							

Print Date: 01/15/2021 8:43:55AM

J flagging is activated

Member of SGS Group

SGS

lank Lab ID: 1597017 C for Samples: 209882001				
esults by EP200.8				
arameter	Results	LOQ/CL	<u>DL</u>	Units
alcium agnesium	250U 25.0U	500 50.0	150 15.0	ug/L ug/L
tch Information Analytical Batch: MMS Analytical Method: EF Instrument: Perkin Elr Analyst: DMM Analytical Date/Time:	200.8	Prep Me Prep Da Prep Init	tch: MXX33919 ethod: E200.2 ite/Time: 1/5/20 tial Wt./Vol.: 20 tract Vol: 50 m	021 2:03:25PM I mL

Print Date: 01/15/2021 8:43:57AM

SGS	

Blank Spike Summary				
Blank Spike ID: LCS for HE Blank Spike Lab ID: 15970 Date Analyzed: 01/07/202	18	MXX3391	9]	Matrix: Water (Surface, Eff., Ground)
QC for Samples: 12098	82001			
Results by EP200.8				
		Blank Spik	e (ug/L)	
Parameter	Spike	<u>Result</u>	Rec (%)	<u>CL</u>
Calcium	10000	10400	104	(85-115)
Magnesium	10000	10500	105	(85-115)
Batch Information				
Analytical Batch: MMS1098 Analytical Method: EP200.8 Instrument: Perkin Elmer N Analyst: DMM	3			Prep Batch: MXX33919 Prep Method: E200.2 Prep Date/Time: 01/05/2021 14:03 Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:
Print Date: 01/15/2021 8:44:00AM				

SGS			_							
Matrix Spike Summary Original Sample ID: 1597023 MS Sample ID: 1597024 MS MSD Sample ID:				Analysis Date: 01/07/2021 11:34 Analysis Date: 01/07/2021 11:37 Analysis Date: Matrix: Water (Surface, Eff., Ground)						
QC for Samples: 1209	882001									
Results by EP200.8										
L	Comula		trix Spike (e Duplicate	,			
Results by EP200.8 Parameter Calcium	<u>Sample</u> 2830	Ma <u>Spike</u> 10000	trix Spike (<u>Result</u> 13100	(ug/L) <u>Rec (%)</u> 103	Spike Spike	e Duplicato <u>Result</u>	e (ug/L) <u>Rec (%)</u>	<u>CL</u> 70-130	<u>RPD (%)</u>	RPD CL
Parameter		Spike	<u>Result</u>	<u>Rec (%)</u>			,		<u>RPD (%)</u>	RPD CL
<u>Parameter</u> Calcium	2830	<u>Spike</u> 10000	<u>Result</u> 13100	<u>Rec (%)</u> 103			,	70-130	<u>RPD (%)</u>	RPD CL
P <u>arameter</u> Calcium Magnesium Batch Information Analytical Batch: MMS	2830 488	<u>Spike</u> 10000	<u>Result</u> 13100	<u>Rec (%)</u> 103 107 Prep	<u>Spike</u> o Batch: N	Result NXX33919	Rec (%)	70-130 70-130		<u>RPD CL</u>
P <u>arameter</u> Calcium Magnesium - Batch Information Analytical Batch: MMS Analytical Method: EP	2830 488 310981 200.8	<u>Spike</u> 10000	<u>Result</u> 13100	<u>Rec (%)</u> 103 107 Prep Prep	Spike o Batch: Mo o Method:	Result NXX33919 DW Dige	Rec (%)	70-130 70-130 s on ICP-N		RPD CL
Parameter Calcium Magnesium Batch Information Analytical Batch: MMS	2830 488 310981 200.8	<u>Spike</u> 10000	<u>Result</u> 13100	Rec (%) 103 107 Prep Prep Prep	Spike o Batch: M o Method: o Date/Tim	Result NXX33919 DW Dige	Rec (%) st for Metals 21 2:03:25	70-130 70-130 s on ICP-N		RPD CL

Print Date: 01/15/2021 8:44:02AM

SGS North America Inc.

SGS			_					
Matrix Spike Summary Original Sample ID: 159703 MS Sample ID: 1597034 M MSD Sample ID:	S				Analysis Analysis	s Date: 0 ⁻ s Date:	1/07/2021 1/07/2021 urface, Eff.	11:42
QC for Samples: 120988200 Results by EP200.8)1				Quilt	Durling	- (
Deveryorten	Commis		trix Spike (e Duplicat	,	
<u>Parameter</u> Calcium	<u>Sample</u> 48400	<u>Spike</u> 10000	<u>Result</u> 58100	<u>Rec (%)</u> 97	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u> 70-13
Magnesium	34400	10000	44300	98				70-13

Batch Information

Analytical Batch: MMS10981 Analytical Method: EP200.8 Instrument: Perkin Elmer NexIon P5 Analyst: DMM Analytical Date/Time: 1/7/2021 11:42:59AM Prep Batch: MXX33919 Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 1/5/2021 2:03:25PM Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Eff., Ground)

CL 70-130

70-130

RPD (%) RPD CL

Print Date: 01/15/2021 8:44:02AM

SGS North America Inc.

SGS

_	Method Blank					
	Blank ID: MB for HBN Blank Lab ID: 159781	1815410 [WTC/3058] 8	Mat	rix: Water (Surf	ace, Eff., Ground)	
	QC for Samples: 1209882001					
_	Results by SM 5310B					
	<u>Parameter</u> Total Organic Carbon	<u>Results</u> 500U	<u>LOQ/CL</u> 1000	<u>DL</u> 400	<u>Units</u> ug/L	
-[Batch Information					
	Analytical Batch: WT Analytical Method: S Instrument: TOC Ana Analyst: EWW Analytical Date/Time:	SM 5310B				

Print Date: 01/15/2021 8:44:04AM

Blank Spike Summary				
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1597817 Date Analyzed: 01/13/2021		[WTC3058]	Matrix: Water (Surface, Eff., Ground)
C for Samples: 12098820	01			
Results by SM 5310B			<u> </u>	
		Blank Spike		
<u>arameter</u> otal Organic Carbon	<u>Spike</u> 75000	<u>Result</u> 74200	<u>Rec (%)</u> 99	<u>CL</u> (80-120)
atch Information				
Analytical Batch: WTC3058 Analytical Method: SM 5310B Instrument: TOC Analyzer 2 Analyst: EWW				

Print Date: 01/15/2021 8:44:07AM

_

I										
Matrix Spike Summary Original Sample ID: 12100 MS Sample ID: 1597819 M MSD Sample ID: 1597820 QC for Samples: 12098820	MS MSD				Analysis Analysis	Date: 0 ⁷ Date: 0 ⁷	1/13/2021 1/13/2021 1/13/2021 urface, Eff.	12:54 13:08)	
QC for Samples: 1209882	UUT									
Results by SM 5310B		Ma	trix Spike (Spike	e Duplicat				
Doromotor	Sampla							CI		
<u>Parameter</u> Total Organic Carbon	<u>Sample</u> 1880	<u>Spike</u> 10000	<u>Result</u> 11700	<u>Rec (%)</u> 99	<u>Spike</u> 10000	<u>Result</u> 11800	<u>Rec (%)</u> 99	<u>CL</u> 75-125	<u>RPD (%)</u> 0.09	<u>RPD CL</u> (< 25)
Batch Information										
Analytical Batch: WTC305 Analytical Method: SM 531	10B									
Instrument: TOC Analyzer Analyst: EWW		DM								
Analytical Date/Time: 1/13	/2021 12:54:14	PM								
Print Date: 01/15/2021 8:44:09AM										

Nelson, Justin (Anchorage)

From:	Marcy Nadel <mdn@shanwil.com></mdn@shanwil.com>
Sent:	Tuesday, December 29, 2020 1:07 PM
То:	Nelson, Justin (Anchorage)
Cc:	Dawkins, Jennifer A (Fairbanks)
Subject:	[EXTERNAL] RE: 1209882

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Hi Justin & Jen,

Yes, metals by 200.8 and TOC by SM 5310B. Thanks!

Happy New Year, Marcy

From: Nelson, Justin (Anchorage) <Justin.Nelson@sgs.com>
Sent: Tuesday, December 29, 2020 11:30 AM
To: Marcy Nadel <MDN@shanwil.com>
Cc: Dawkins, Jennifer A (Fairbanks) <Jennifer.Dawkins@sgs.com>
Subject: 1209882

Please let me know what method is needed for Ca/Mg/TOC on this workorder. I'm assuming 200.8 / 5310 unless you say differently. Thanks!

Justin A. Nelson Environmental, Health & Safety Client Service Manager, Alaska SGS 200 West Potter Drive 99518 – Anchorage Phone: +01 907 562 2343 Direct: +01 907 550 3205 E-mail: Justin.Nelson@sgs.com

Information in this email and any attachments is confidential and intended solely for the use of the individual(s) to whom it is addressed or otherwise directed. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of the Company. Finally, the recipient should check this email and any attachments for the presence of viruses. The Company accepts no liability for any damage caused by any virus transmitted by this email. All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at https://www.sgs.com/en/terms-and-conditions

		1209882		
BUILSON, INC. BEGTECHNICAL AND EWILSON, INC. 2355 Hill Road Fairbanks, AK 99709	CHAIN-			Page <u></u> of <u>ا</u> Laboratory <u>SG-s</u> Attn: <u>1. Da ماریک</u>
(907) 479-0600 www.shannonwilson.com Turn Around Time: Normal Rush		C.	Analytical Methods (include press	
Please Specify Sample Identity	Date o. Time Sample	Jest C C C C C C C C C C C C C C C C C C C	10 miles	Total Multiple Containers
MW-1903-20 DA-6@	DA 1157 12/22/			3 groundwater
	mple Receipt	Reliquished By: 1.	Reliquished By: 2.	Reliquished By: 3.
I TUNE STOP	Intact? Y/N/NA	nted Name: Date: 12/23	Signature:Time: ZPrinted Name: Date	Signature: Time:
Ongoing Project? Yes 🛣 No 🗌 Temp:		Masters mpany: hanon thison, Inc.	Company ELS	Company:
Notes:	Sig	Received By: 1:	Received By: 2. Signature: Time: Printed Name: Date:	Received By: 3. Signature Time: MUMARIA Printed Name: Date: Strut MUBAH
Distribution: White - w/shipment - returned to Shannon Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - job file			Company.	Company: 563 D30 0.6

P# 350732

(F(B

No. 16 38193

Dawkins, Jennifer A (Fairbanks)

Marcy – Due to the sample being preserved before filtration, we are unable to run DOC on work order 1209882. We will proceed with TOC, Ca, and Mg. Thanks,

Jen

VOICE OF THE CUSTOMER 2020 $^{\circ}$

Let your voice be heard! Click here to participate in our annual customer service survey on SGS.SurveyMonkey.com

Jennifer A-B Dawkins Environment, Health & Safety Fairbanks Client Services Project Manager - Alaska SGS 3180 Peger Rd. Ste. 190 Fairbanks, AK 99709 907-474-8656 907-322-8444 jennifer.dawkins@sgs.com

000	e-Sam <u>p</u>	ole Receip	ceipt Form					
SGS	SGS Workorder #:	1	20988	32	1 2	0 9 8 8 2		
Re	view Criteria	Condition (Yes	, No, N/A	Exce	eptions Not	ted below		
Chain o	f Custody / Temperature Requir	rements	Yes	Exemption per	rmitted if samp	ler hand carries/delivers.		
	Were Custody Seals intact? Note # & I	location Yes	1F, 1B					
	COC accompanied sa	mples? YES						
DOD: Were s	amples received in COC corresponding c	oolers? N/A						
	N/A **Exemption permitted if	chilled & colle	ected <8 hours	ago, or for sam	ples where ch	illing is not required		
Temperat	ure blank compliant* (i.e., 0-6 °C afte	er CF)? YES	Cooler ID:	1	@	0.6 °C Therm. ID: D30		
			Cooler ID:		@	°C Therm. ID:		
	temperature blank, the "cooler temperature" will "EMP" will be noted to the right. "ambient" or "chi		Cooler ID:		@	°C Therm. ID:		
	oted if neither is available.		Cooler ID:		@	°C Therm. ID:		
			Cooler ID:		@	°C Therm. ID:		
*lf >6	°C, were samples collected <8 hours	ago? N/A]					
	If <0°C, were sample containers ice	free? N/A	4					
Note: Identify contain	ers received at non-compliant temper	aturo						
	Use form FS-0029 if more space is ne							
	•							
Holding Time / D	ocumentation / Sample Condition Re	equirements	Note: Refer to f	orm F-083 "Sampl	le Guide" for spe	cific holding times.		
V	Vere samples received within holding	g time? YES						
			T					
	C** (i.e.,sample IDs,dates/times colle							
	fer <1hr, record details & login per CO							
	ontainers differs from COC, SGS will default to C							
	clear? (i.e., method is specified for an							
with mu	Iltiple option for analysis (Ex: BTEX, N	vletals)						
				11				
			N/A		-	netals (e.g,200.8/6020B).		
Were proper container	rs (type/mass/volume/preservative***))used?	SEE ATTACI	HED CHANGE (ORDER			
Mara Trip Blanka	Volatile / LL-Hg Requ							
	(i.e., VOAs, LL-Hg) in cooler with san Is free of headspace (i.e., bubbles ≤ 6	-						
	soil VOAs field extracted with MeOH							
			ll 			le ter avec Pter		
Note to Clie	ent: Any "No", answer above indicates nor			procedures and	i may impact d	ata quality.		
	Additiona	l notes (if a	applicable):					

000	e-Sample	le Receipt Form FBK							
SGS	SGS Workorder #:	1	2098	82	12	2098	882		
Revi	ew Criteria	Condition (Yes,	No, N/A	Exce	eptions Note	ed belo	w		
Chain of Cha	Custody / Temperature Requi	rements	Y	Exemption per	rmitted if sample	<mark>er hand c</mark> a	arries/deliv	vers.	
	Were Custody Seals intact? Note # &	location N/A							
	COC accompanied sa								
DOD: Were sar	nples received in COC corresponding of								
	**Exemption permitted if			-		-	-		
Temperatur	e blank compliant* (i.e., 0-6 °C afte	er CF)? Yes	Cooler ID:	1	@		Therm. ID:	D64	
lf			Cooler ID:		@		Therm. ID:		
	nperature blank, the "cooler temperature" will MP" will be noted to the right. "ambient" or "ch		Cooler ID:		@		Therm. ID:		
be note	d if neither is available.		Cooler ID:		@		Therm. ID:		
*16 . 000									
~11 >0 °C	C, were samples collected <8 hours								
	f <0°C, were sample containers ice	free?							
Note: Identify containers	s received at non-compliant tempe	rature.							
	se form FS-0029 if more space is n								
	cumentation / Sample Condition Re		Note: Refe	r to form F-083 "S	ample Guide" fo	or specific	holding tir	mes.	
	* (i.e.,sample IDs,dates/times colle								
	r <1hr, record details & login per C								
•	ainers differs from COC, SGS will default to (Change an	ulan ia attachad					
vvere samples in go	od condition (no leaks/cracks/brea	kage)? Yes	Change of	rder is attached.					
Were analytical requests cle	ar? (i.e., method is specified for ar	nalyses							
with multi	ple option for analysis (Ex: BTEX, I								
Were Trip Blanks (i	e., VOAs, LL-Hg) in cooler with sar	Yes							
	free of headspace (i.e., bubbles ≤								
	bil VOAs field extracted with MeOH								
	ld Time, was RUSH/Short HT emai								
	: Any "No", answer above indicates no		with standa	rd procedures and	may impact da	ata quality			
					,	<u></u>	-		
	Additiona	al notes (if a	pplicable):		T			
SGS Profile	# 3507	32		35()732				
		U							

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1209882001-A 1209882001-B 1209882002-A	HNO3 to pH < 2 HCL to pH < 2 HCL to pH < 2	ОК ОК ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM - The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

Laboratory Data Review Checklist

Completed By:

Justin Risley

Title:

Environmental Scientist

Date:

1/20/2021

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

SGS North America, Inc.

Laboratory Report Number:

1209882

Laboratory Report Date:

1/15/2021

CS Site Name:

Fairbanks DOT&PF PFAS

ADEC File Number:

100.38.277

Hazard Identification Number:

26816

Laboratory Report Date:

1/15/2021

CS Site Name:

Fairbanks DOT&PF PFAS

Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	Yes \boxtimes No \square N/A \square Comments:
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	Yes \square No \square N/A \boxtimes Comments:
	Analyses were performed by SGS North America, Inc. in Anchorage, AK.
2. <u>C</u>	Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	Yes \boxtimes No \square N/A \square Comments:
	b. Correct analyses requested?
	Yes \boxtimes No \square N/A \square Comments:
. <u>L</u>	Laboratory Sample Receipt Documentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	Yes \boxtimes No \square N/A \square Comments:
	Sample cooler temperature recorded at 0.6° C upon receipt at laboratory in Fairbanks, and 4.1° C upon receipt in Anchorage.

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/15/2021

CS Site Name:

Fairbanks DOT&PF PFAS

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes⊠	No	N/A	Comments:
			commence.

The project sample was preserved prior to filtration for the DOC analysis.

e. Data quality or usability affected?

Comments:

The laboratory was unable to analyze the project sample for DOC; this analyte was not reported for the sample set.

- 4. <u>Case Narrative</u>
 - a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \square No \square N/A \boxtimes Comments:

The case narrative does not identify any discrepancies, errors, or QC failures.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

N/A, see above.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The case narrative does not specify an effect on data quality/usability.

Laboratory Report Date:

1/15/2021

CS Site Name:

Fairbanks DOT&PF PFAS

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

Yes \square No \boxtimes N/A \square Comments:

DOC unable to be analyzed; see above.

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \square No \square N/A \boxtimes Comments:

N/A; the requested analytes were detected in the project sample.

e. Data quality or usability affected?

No, see above.

6. QC Samples

a. Method Blank

i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

 $Yes \boxtimes No \square N/A \square Comments:$

Laboratory Report Date:

1/15/2021

CS Site Name:

Fairbanks DOT&PF PFAS

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

There were no detections in the method blank samples associated with this work order.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

v. Data quality or usability affected?

Comments:

No, see above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

An LCS was reported for TOC analysis.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

An LCS was reported for calcium and magnesium analyses.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \boxtimes Comments:

LCSD samples were not reported for TOC, calcium, or magnesium.

Laboratory Report Date:

1/15/2021

CS Site Name:

Fairbanks DOT&PF PFAS

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Percent recovery was within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

No, see above.

- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
 - i. Organics One MS/MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

MS/MSD samples were reported for total organic carbon analysis.

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

Two MS samples were reported for calcium and magnesium analyses.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes \boxtimes No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

1/15/2021

CS Site Name:

Fairbanks DOT&PF PFAS

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Percent recovery and RPD were within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

No, see above.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes \square No \square N/A \boxtimes Comments:

Surrogates are not reported for these analyses.

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

iv. Data quality or usability affected?

Comments:

No; see above.

Laboratory Report Date:

1/15/2021

CS Site Name:

Fairbanks DOT&PF PFAS

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \square No \square N/A \boxtimes Comments:

Analysis for volatile compounds was not requested with this work order. Trip blank is not required.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

iii. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

N/A; see above.

v. Data quality or usability affected?

Comments:

No, see above.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \square No \boxtimes N/A \square Comments:

Only one sample was submitted for this work order.

ii. Submitted blind to lab?

Yes□	No	$N/A \boxtimes$	Comments:
------	----	-----------------	-----------

N/A; see above.

Laboratory Report Date:

1/15/2021

CS Site Name:

Fairbanks DOT&PF PFAS

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1-R_2)/((R_1+R_2)/2)$ x 100

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

No, see above.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

The project samples were collected using non-reusable equipment. An equipment blank is not required.

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

See above.

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

N/A; see above

iii. Data quality or usability affected?

Comments:

No, see above.

Laboratory Report Date:

1/15/2021

CS Site Name:

Fairbanks DOT&PF PFAS

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes \square No \square N/A \boxtimes Comments:

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-68386-1

Client Project/Site: Plume Stop Pilot

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Marcy Nadel

Authorized for release by: 1/8/2021 2:35:37 PM

David Alltucker, Project Manager I (916)374-4383 David.Alltucker@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.eurofinsus.com/Env

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
-	19

Qualifiers

Qualifiers		3
LCMS		
Qualifier	Qualifier Description	4
*+	LCS and/or LCSD is outside acceptance limits, high biased.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	o
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF		
	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)	

Job ID: 320-68386-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-68386-1

Receipt

The sample was received on 12/30/2020 2:15 PM; the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.5° C.

LCMS

Method 537 (modified): The laboratory control sample duplicate (LCSD) for preparation batch 320-447657 and analytical batch 320-447935 recovered outside control limits for the following analyte: 11CI-PF3OUdS. The analyte was biased high in the LCSD and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following sample was black prior to extraction:MW-1903-20 (320-68386-1).

Method 3535: The following sample contains floating particulates at the bottom of the sample containers prior to extraction: MW-1903-20 (320-68386-1).

Method 3535: The following sample was gray after final volume:MW-1903-20 (320-68386-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Shannon & Wilson, Inc Project/Site: Plume Stop Pilot

Client Sample ID: MW-1903-20

_									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	21		4.6	2.2	ng/L	1	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	12		1.8	0.45	ng/L	1		537 (modified)	Total/NA

Job ID: 320-68386-1 Lab Sample ID: 320-68386-1 5 Client: Shannon & Wilson, Inc Project/Site: Plume Stop Pilot

Client Sample ID: MW-1903-20 Date Collected: 12/22/20 11:57 Date Received: 12/30/20 14:15

Job	١D·	320-	6838	6-1
000	ю.	520-	00000	U- I

Lab Sample ID: 320-68386-1

Matrix: Water

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	21		4.6	2.2	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.53	ng/L			01/03/21 15:40	1
erfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluoropentanoic acid (PFPeA)	12		1.8	0.45	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.78	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.52	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.49	-		12/31/20 12:36	01/03/21 15:40	1
I-ethylperfluorooctanesulfonamidoac	ND		4.6		ng/L		12/31/20 12:36	01/03/21 15:40	1
etic acid (NEtFOSAA)					-				
N-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluoroheptanesulfonic Acid PFHpS)	ND		1.8	0.17	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.29	ng/L		12/31/20 12:36	01/03/21 15:40	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.90	ng/L		12/31/20 12:36	01/03/21 15:40	1
:2 FTS	ND		4.6	2.3	ng/L		12/31/20 12:36	01/03/21 15:40	1
:2 FTS	ND		1.8	0.42	ng/L		12/31/20 12:36	01/03/21 15:40	1
CI-PF3ONS	ND		1.8	0.22	ng/L		12/31/20 12:36	01/03/21 15:40	1
IFPO-DA (GenX)	ND		3.7	1.4	ng/L		12/31/20 12:36	01/03/21 15:40	1
1CI-PF3OUdS	ND	*+	1.8	0.29	ng/L		12/31/20 12:36	01/03/21 15:40	1
,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND		1.8	0.37	ng/L		12/31/20 12:36	01/03/21 15:40	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
3C2 PFHxA	110		25 - 150				12/31/20 12:36	01/03/21 15:40	1
3C4 PFHpA	109		25 - 150				12/31/20 12:36	01/03/21 15:40	1
3C4 PFOA	108		25 - 150				12/31/20 12:36	01/03/21 15:40	1
3C5 PFNA	108		25 - 150					01/03/21 15:40	
3C2 PFDA	112		25 - 150					01/03/21 15:40	1
3C2 PFUnA	118		25 - 150					01/03/21 15:40	1
3C8 FOSA	104		25 - 150					01/03/21 15:40	
3C2 PFDoA	109		25 - 150					01/03/21 15:40	1
3C4 PFBA	108		25 - 150					01/03/21 15:40	1
3C2 PFTeDA	104		25 - 150					01/03/21 15:40	
3C5 PFPeA	85		25 - 150					01/03/21 15:40	1
3C3 PFBS	100		25 - 150					01/03/21 15:40	1
802 PFHxS	99		25 - 150					01/03/21 15:40	
3C4 PFOS	99 100		25 - 150 25 - 150					01/03/21 15:40	1
3-NMeFOSAA	97		25 - 150					01/03/21 15:40	1
5-NEtFOSAA 5-NEtFOSAA	97 100		25 - 150 25 - 150					01/03/21 15:40	
12-6:2 FTS	88		25 - 150 25 - 150					01/03/21 15:40	1
12-0.2 110	00								1
12-8:2 FTS	100		25 - 150				12/31/20 12:36		

Method: 537 (modified) - Fluorinated Alkyl Substances Matrix: Water

Prep Type: Total/NA

5

6 7

			Perce	ent Isotope	Dilution Re	ecovery (Ac	ceptance L	.imits)	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFOSA	PFDoA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
320-68386-1	MW-1903-20	110	109	108	108	112	118	104	109
LCS 320-447657/2-A	Lab Control Sample	90	92	91	89	91	88	88	88
LCSD 320-447657/3-A	Lab Control Sample Dup	85	86	88	85	86	86	79	91
MB 320-447657/1-A	Method Blank	88	91	92	86	95	90	83	96
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	.imits)	
		PFBA	PFTDA	PFPeA	C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFO
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
320-68386-1	MW-1903-20	108	104	85	100	99	100	97	100
LCS 320-447657/2-A	Lab Control Sample	83	108	78	84	89	88	86	87
LCSD 320-447657/3-A	Lab Control Sample Dup	79	97	76	78	82	83	82	80
MB 320-447657/1-A	Method Blank	80	90	77	83	84	88	81	84
			Perce	ent Isotone	Dilution Re	coverv (Ac	centance I	imits)	
		M262FTS	M282FTS	•	Difution ite				
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)					
320-68386-1	MW-1903-20		100	102					
LCS 320-447657/2-A	Lab Control Sample	78	85	88					
LCSD 320-447657/3-A	Lab Control Sample Dup	73	84	84					
MB 320-447657/1-A	Method Blank	81	86	84					
Surrogate Legend PFHxA = 13C2 PFHxA									
C4PFHA = 13C4 PFHpA									
PFOA = 13C4 PFOA									
PFNA = 13C5 PFNA									
PFDA = 13C2 PFDA									
PFUnA = 13C2 PFUnA									
PFOSA = 13C8 FOSA									
PFDoA = 13C2 PFDoA									
PFBA = 13C4 PFBA									
PFTDA = 13C2 PFTeDA									
PFPeA = 13C5 PFPeA									
C3PFBS = 13C3 PFBS									
PFHxS = 18O2 PFHxS									
PFOS = 13C4 PFOS									
d3NMFOS = d3-NMeFOS	SAA								
d5NEFOS = d5-NEtFOSA	A								
M262FTS = M2-6:2 FTS									
M282FTS = M2-8:2 FTS									

Prep Type: Total/NA

Client Sample ID: Method Blank

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-447657/1-A Matrix: Water Analysis Batch: 447935

Analysis Batch: 447935								Prep Batch:	447657
		МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		5.0	2.4	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		12/31/20 12:36	01/03/21 15:12	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		12/31/20 12:36	01/03/21 15:12	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.19	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32	ng/L		12/31/20 12:36	01/03/21 15:12	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.98	ng/L		12/31/20 12:36	01/03/21 15:12	1
6:2 FTS	ND		5.0	2.5	ng/L		12/31/20 12:36	01/03/21 15:12	1
8:2 FTS	ND		2.0	0.46	ng/L		12/31/20 12:36	01/03/21 15:12	1
9CI-PF3ONS	ND		2.0	0.24	ng/L		12/31/20 12:36	01/03/21 15:12	1
HFPO-DA (GenX)	ND		4.0	1.5	ng/L		12/31/20 12:36	01/03/21 15:12	1
11CI-PF3OUdS	ND		2.0	0.32	ng/L		12/31/20 12:36	01/03/21 15:12	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		12/31/20 12:36	01/03/21 15:12	1

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	88		25 - 150	12/31/20 12:36	01/03/21 15:12	1
13C4 PFHpA	91		25 - 150	12/31/20 12:36	01/03/21 15:12	1
13C4 PFOA	92		25 - 150	12/31/20 12:36	01/03/21 15:12	1
13C5 PFNA	86		25 - 150	12/31/20 12:36	01/03/21 15:12	1
13C2 PFDA	95		25 - 150	12/31/20 12:36	01/03/21 15:12	1
13C2 PFUnA	90		25 - 150	12/31/20 12:36	01/03/21 15:12	1
13C8 FOSA	83		25 - 150	12/31/20 12:36	01/03/21 15:12	1
13C2 PFDoA	96		25 - 150	12/31/20 12:36	01/03/21 15:12	1
13C4 PFBA	80		25 - 150	12/31/20 12:36	01/03/21 15:12	1
13C2 PFTeDA	90		25 - 150	12/31/20 12:36	01/03/21 15:12	1
13C5 PFPeA	77		25 - 150	12/31/20 12:36	01/03/21 15:12	1
13C3 PFBS	83		25 - 150	12/31/20 12:36	01/03/21 15:12	1
18O2 PFHxS	84		25 - 150	12/31/20 12:36	01/03/21 15:12	1
13C4 PFOS	88		25 - 150	12/31/20 12:36	01/03/21 15:12	1
d3-NMeFOSAA	81		25 - 150	12/31/20 12:36	01/03/21 15:12	1
d5-NEtFOSAA	84		25 - 150	12/31/20 12:36	01/03/21 15:12	1
M2-6:2 FTS	81		25 - 150	12/31/20 12:36	01/03/21 15:12	1
M2-8:2 FTS	86		25 - 150	12/31/20 12:36	01/03/21 15:12	1

Eurofins TestAmerica, Sacramento

QC Sample Results

Job ID: 320-68386-1

Method: 537 (modified) - Eluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-44 Matrix: Water Analysis Batch: 447935	7657/1-A						Clie	nt Samp	ole ID: Metho Prep Type: T Prep Batch:	'otal/N/
		MB MB								
Isotope Dilution	%Reco	very Qualifier	Limits					repared	Analyzed	Dil Fa
13C3 HFPO-DA		84	25 - 150				12/3	1/20 12:36	01/03/21 15:12	
Lab Sample ID: LCS 320-4 Matrix: Water Analysis Batch: 447935	47657/2-A		Spike	LCS	LCS	Client	t Sar	nple ID:	Lab Control Prep Type: T Prep Batch: %Rec.	otal/N/
Analyte			Added	-	Qualifier	Unit	D	%Rec	Limits	
Perfluorobutanoic acid (PFBA)			40.0	36.2		ng/L		90 -	76 - 136	
Perfluorohexanoic acid (PFHxA)			40.0	37.3		ng/L		93	73 - 133	
Perfluoroheptanoic acid (PFHpA)			40.0	37.0		ng/L		93	72 - 132	
Perfluoropentanoic acid (PFPeA)			40.0	35.8		ng/L		90	71 - 131	
Perfluorooctanoic acid (PFOA)			40.0	34.1		-		90 85	70 - 130	
						ng/L				
Perfluorononanoic acid (PFNA)			40.0	36.8		ng/L		92	75 - 135	
Perfluorodecanoic acid (PFDA)			40.0	37.4		ng/L		94	76 - 136	
Perfluoroundecanoic acid			40.0	34.1		ng/L		85	68 - 128	
(PFUnA) Perfluorododecanoic acid (PFDoA)			40.0	38.7		ng/L		97	71 - 131	
Perfluorotridecanoic acid (PFTriA)			40.0	46.9		ng/L		117	71 - 131	
Perfluorotetradecanoic acid (PFTeA)			40.0	35.1		ng/L		88	70 - 130	
Perfluorobutanesulfonic acid (PFBS)			35.4	32.9		ng/L		93	67 - 127	
Perfluorohexanesulfonic acid (PFHxS)			36.4	32.2		ng/L		88	59 - 119	
Perfluorooctanesulfonic acid (PFOS)			37.1	34.4		ng/L		93	70 - 130	
Perfluoroheptanesulfonic Acid (PFHpS)			38.1	34.5		ng/L		91	76 - 136	
Perfluorodecanesulfonic acid (PFDS) Perfluorooctanesulfonamide			38.6 40.0	38.3 39.5		ng/L ng/L		99 99	71 ₋ 131 73 ₋ 133	
(FOSA) 6:2 FTS			37.9	34.0		ng/L		99 90	59 - 175	
8:2 FTS			38.3	36.0		ng/L		90 94	75 - 135	
						-				
9CI-PF3ONS			37.3	39.9		ng/L		107	75 - 135	
HFPO-DA (GenX)			40.0	39.3		ng/L		98 105	51 - 173	
11CI-PF3OUdS			37.7	39.7		ng/L		105	54 - 114	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	LCS	105	37.7	39.3		ng/L		104	79 - 139	
Isotope Dilution	%Recovery		Limits							
13C2 PFHxA	90		25 - 150							
13C4 PFHpA	90 92		25 - 150 25 - 150							
13C4 РГПРА 13C4 РFOA	92 91		25 - 150 25 - 150							
13C5 PFNA	89 01		25 - 150 25 - 150							
13C2 PFDA	91		25 - 150							
13C2 PFUnA	88		25 - 150							
13C8 FOSA	88		25 - 150							
13C2 PFDoA	88		25 - 150							

Eurofins TestAmerica, Sacramento

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-447657/2-A Matrix: Water

Analysis Batch: 447935

· · · · · · · · · · · · · · · · · · ·	LCS	LCS	
Isotope Dilution	%Recovery		Limits
13C2 PFTeDA	108		25 - 150
13C5 PFPeA	78		25 - 150
13C3 PFBS	84		25 - 150
18O2 PFHxS	89		25 - 150
13C4 PFOS	88		25 - 150
d3-NMeFOSAA	86		25 - 150
d5-NEtFOSAA	87		25 - 150
M2-6:2 FTS	78		25 - 150
M2-8:2 FTS	85		25 - 150
13C3 HFPO-DA	88		25 - 150

Lab Sample ID: LCSD 320-447657/3-A Matrix: Water Analysis Batch: 447935

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 447657

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 447657

Analysis balch: 447935							Ргер Ба	atch: 44		
	Spike	LCSD	LCSD				%Rec.		RPD	2
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Perfluorobutanoic acid (PFBA)	40.0	40.2		ng/L		100	76 - 136	11	30	
Perfluorohexanoic acid (PFHxA)	40.0	40.3		ng/L		101	73 - 133	8	30	
Perfluoroheptanoic acid (PFHpA)	40.0	42.3		ng/L		106	72 - 132	13	30	
Perfluoropentanoic acid (PFPeA)	40.0	39.1		ng/L		98	71 - 131	9	30	
Perfluorooctanoic acid (PFOA)	40.0	40.4		ng/L		101	70 - 130	17	30	
Perfluorononanoic acid (PFNA)	40.0	42.8		ng/L		107	75 - 135	15	30	
Perfluorodecanoic acid (PFDA)	40.0	37.3		ng/L		93	76 - 136	0	30	
Perfluoroundecanoic acid (PFUnA)	40.0	35.7		ng/L		89	68 - 128	5	30	
Perfluorododecanoic acid (PFDoA)	40.0	40.7		ng/L		102	71 - 131	5	30	
Perfluorotridecanoic acid (PFTriA)	40.0	41.9		ng/L		105	71_131	11	30	
Perfluorotetradecanoic acid (PFTeA)	40.0	43.0		ng/L		107	70 - 130	20	30	
Perfluorobutanesulfonic acid (PFBS)	35.4	37.1		ng/L		105	67 - 127	12	30	
Perfluorohexanesulfonic acid (PFHxS)	36.4	36.6		ng/L		100	59 - 119	13	30	
Perfluorooctanesulfonic acid (PFOS)	37.1	37.1		ng/L		100	70 - 130	8	30	
Perfluoroheptanesulfonic Acid (PFHpS)	38.1	39.2		ng/L		103	76 - 136	13	30	
Perfluorodecanesulfonic acid (PFDS)	38.6	41.3		ng/L		107	71 - 131	8	30	
Perfluorooctanesulfonamide (FOSA)	40.0	44.4		ng/L		111	73 - 133	12	30	
6:2 FTS	37.9	38.4		ng/L		101	59 - 175	12	30	
8:2 FTS	38.3	41.4		ng/L		108	75 - 135	14	30	
9CI-PF3ONS	37.3	44.2		ng/L		119	75 - 135	10	30	
HFPO-DA (GenX)	40.0	41.0		ng/L		102	51 - 173	4	30	
11CI-PF3OUdS	37.7	45.2	*+	ng/L		120	54 _ 114	13	30	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	37.7	45.2		ng/L		120	79 - 139	14	30	

QC Sample Results

Job ID: 320-68386-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	85		25 - 150
13C4 PFHpA	86		25 - 150
13C4 PFOA	88		25 - 150
13C5 PFNA	85		25 - 150
13C2 PFDA	86		25 - 150
13C2 PFUnA	86		25 - 150
13C8 FOSA	79		25 - 150
13C2 PFDoA	91		25 - 150
13C4 PFBA	79		25 - 150
13C2 PFTeDA	97		25 - 150
13C5 PFPeA	76		25 - 150
13C3 PFBS	78		25 - 150
18O2 PFHxS	82		25 - 150
13C4 PFOS	83		25 - 150
d3-NMeFOSAA	82		25 - 150
d5-NEtFOSAA	80		25 - 150
M2-6:2 FTS	73		25 - 150
M2-8:2 FTS	84		25 - 150
13C3 HFPO-DA	84		25 - 150

QC Association Summary

Client: Shannon & Wilson, Inc Project/Site: Plume Stop Pilot

537 (modified)

447657

LCMS

Prep Batch: 447657

LCSD 320-447657/3-A

Lab Control Sample Dup

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-68386-1	MW-1903-20	Total/NA	Water	3535	
MB 320-447657/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-447657/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-447657/3-A	Lab Control Sample Dup	Total/NA	Water	3535	
nalysis Batch: 4479	135				
- Leh Comula ID	Client Semale ID	Dren Tune	Matrix	Mathad	Dran Batah
Lab Sample ID	Client Sample ID		Matrix	Method	Prep Batch
320-68386-1	MW-1903-20	Total/NA	Water	537 (modified)	447657
·					•

Total/NA

Water

Matrix: Water

Lab Sample ID: 320-68386-1

Client Sample ID: MW-1903-20 Date Collected: 12/22/20 11:57 Date Received: 12/30/20 14:15

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analvzed	Analvst	Lab
Total/NA	Prep	3535		Factor	273.1 mL	10.00 mL	447657	12/31/20 12:36		TAL SAC
Total/NA	Analysis	537 (modified)		1			447935	01/03/21 15:40	S1M	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: Shannon & Wilson, Inc Project/Site: Plume Stop Pilot Job ID: 320-68386-1

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

uthority	Program	Identification Number	Expiration Date
aska (UST)	State	17-020	01-20-21
NAB	Dept. of Defense ELAP	L2468	01-20-21
NAB	Dept. of Energy	L2468.01	01-20-21
IAB	ISO/IEC 17025	L2468	01-20-21
zona	State	AZ0708	08-11-21
ansas DEQ	State	88-0691	06-17-21
ornia	State	2897	01-31-22
orado	State	CA0004	08-31-21
necticut	State	PH-0691	06-30-21
da	NELAP	E87570	06-30-21
rgia	State	4040	01-30-21
/aii	State	<cert no.=""></cert>	01-29-21
is	NELAP	200060	03-17-21
sas	NELAP	E-10375	02-01-21
iana	NELAP	01944	06-30-21
e	State	CA00004	04-14-22
gan	State	9947	08-03-23
la	State	CA000442021-2	07-31-21
lampshire	NELAP	2997	04-18-21
ersey	NELAP	CA005	06-30-21
York	NELAP	11666	04-01-21
'n	NELAP	4040	01-29-21
nsylvania	NELAP	68-01272	03-31-21
3	NELAP	T104704399-19-13	06-01-21
sh & Wildlife	US Federal Programs	58448	07-31-21
ł	US Federal Programs	P330-18-00239	07-31-21
	NELAP	CA000442019-01	02-28-21
ont	State	VT-4040	04-16-21
a	NELAP	460278	03-14-21
ington	State	C581	05-05-21
Virginia (DW)	State	9930C	12-31-20 *
onsin	State	998204680	08-31-21
ming	State Program	8TMS-L	01-28-19 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Shannon & Wilson, Inc Project/Site: Plume Stop Pilot

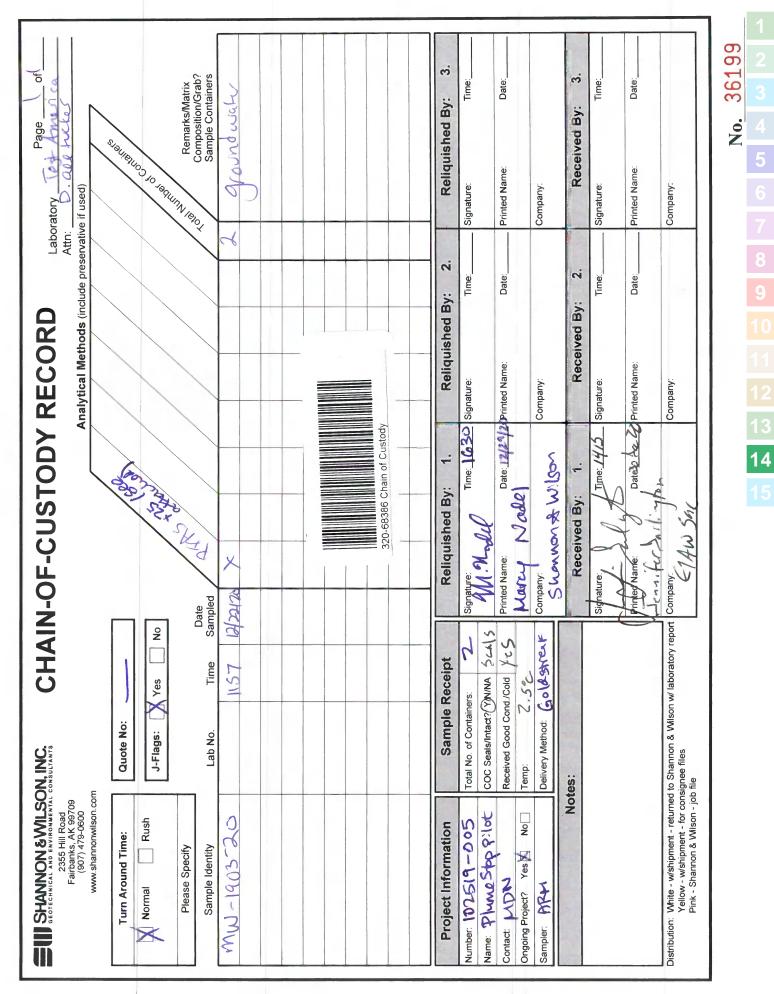
Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:


TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: Plume Stop Pilot

320-68386-1 MW-1903-20 Water 12/22/20 11:57 12/30/20 14:15	Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
Valor 12/22/20 11:01 12/00/20 14:10	320-68386-1	MW-1903-20	Water	12/22/20 11:57	12/30/20 14:15	

1/8/2021

PFAS Analyte List for MW-1903-20

PFC_IDA	PFAS, Method 537 List + addons	MDL	RL	
	11CI-PF3OUdS	0.32	2	ng/L
	4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	0.4	2	ng/L
	6:2 FTS	2.5	5	ng/L
	8:2 FTS	0.46	2	ng/L
	9CI-PF3ONS	0.24	2	ng/L
	HFPO-DA (GenX)	1.5	4	ng/L
	N-ethylperfluorooctanesulfonamidoacetic ac (NEtFOSAA)	1.3	5	ng/L
	N-methylperfluorooctanesulfonamidoacetic ac (NMeFOSAA)	1.2	5	ng/L
	Perfluorobutanesulfonic acid (PFBS)	0.2	2	ng/L
	Perfluorobutanoic acid (PFBA)	2.4	5	ng/L
	Perfluorodecanesulfonic acid (PFDS)	0.32	2	ng/L
	Perfluorodecanoic acid (PFDA)	0.31	2	ng/L
	Perfluorododecanoic acid (PFDoA)	0.55	2	ng/L
	Perfluoroheptanesulfonic Acid (PFHpS)	0.19	2	ng/L
	Perfluoroheptanoic acid (PFHpA)	0.25	2	ng/L
	Perfluorohexanesulfonic acid (PFHxS)	0.57	2	ng/L
	Perfluorohexanoic acid (PFHxA)	0.58	2	ng/L
	Perfluorononanoic acid (PFNA)	0.27	2	ng/L
	Perfluorooctanesulfonamide (FOSA)	0.98	2	ng/L
	Perfluorooctanesulfonic acid (PFOS)	0.54	2	ng/L
	Perfluorooctanoic acid (PFOA)	0.85	2	ng/L
	Perfluoropentanoic acid (PFPeA)	0.49	2	ng/L
	Perfluorotetradecanoic acid (PFTeA)	0.73	2	ng/L
	Perfluorotridecanoic acid (PFTriA)	1.3	2	ng/L
	Perfluoroundecanoic acid (PFUnA)	1.1	2	ng/L

14

Client: Shannon & Wilson, Inc

Login Number: 68386 List Number: 1 Creator: Her, David A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seals
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

15

List Source: Eurofins TestAmerica, Sacramento

Laboratory Data Review Checklist

Completed By:

Justin Risley

Title:

Environmental Scientist

Date:

January 13, 2021

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)

Laboratory Report Number:

320-68386-1

Laboratory Report Date:

January 8, 2021

CS Site Name:

DOT&PF Fairbanks International PFAS PlumeStop Monitoring

ADEC File Number:

100.38.277

Hazard Identification Number:

26816

Laboratory Report Date:

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

Yes \boxtimes No \square N/A \square Comments:

The DEC certified TestAmerica of West Sacramento, CA for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018 by method 537. These compounds were included in the DEC's Contaminated Sites Laboratory Approval 17-020.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

The requested analyses were conducted by TestAmerica of West Sacramento, CA.

2. Chain of Custody (CoC)

a. CoC information completed, signed, and dated (including released/received by)?

Yes⊠	No	N/A	Comments:
------	----	-----	-----------

b. Correct analyses requested?

Yes⊠	No□	N/A	Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

YesNoN/AComments:

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \square No \square N/A \boxtimes Comments:

Samples do not require preservation other than temperature.

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

The sample receipt form notes that the samples were received in good condition.

Laboratory Report Date:

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \square No \square N/A \boxtimes Comments:

The sample receipt form notes no discrepancies.

e. Data quality or usability affected?

Comments:

Data quality and/or usability were not affected.

4. <u>Case Narrative</u>

a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

The case narrative indicates the following:

The samples arrived in good condition and properly preserved. The temperature of the sample cooler received with this shipment was 2.5 ° C upon arrival at the laboratory.

The laboratory control sample duplicate (LCSD) for preparation batch 320-447657 and analytical batch 320-447935 recovered outside control limits for the following analyte:11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid. This analyte was biased high in the LCSD, but was not detected in the associated samples. The results are unaffected.

The following sample was black prior to extraction: *MW-1903-20*

The following samples contain floating particulates in the bottles prior to extraction: MW-1903-20

The following sample was gray after final volume: MW-1903-20

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

No corrective actions necessary.

Laboratory Report Date:

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The results are unaffected.

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \boxtimes No \square N/A \square Comments:

The reporting limit (RL) is less than the applicable DEC regulatory limit for the project.

e. Data quality or usability affected?

The data quality and/or usability were not affected; see above.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

```
Yes \boxtimes No \square N/A \square Comments:
```

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
 Yes⊠ No□ N/A□ Comments:

There were no detections in the method blank sample associated with this project sample.

Laboratory Report Date:

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

N/A; see above.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

v. Data quality or usability affected?

Comments:

No; see above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

Metals and/or inorganics were not analyzed as part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \square No \boxtimes N/A \square Comments:

LCSD recovery for 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid is above laboratory limits.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid was not detected in the project sample in the associated preparatory batch.

Laboratory Report Date:

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \boxtimes N/A \square Comments:

11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid was not detected in the associated project sample, therefore the data is not affected. Qualification of the data was not required.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability were not affected; see above.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes \square No \boxtimes N/A \square Comments:

MS and MSD samples were not analyzed for this work order. See LCS/LCSD for an assessment of the laboratory accuracy and precision.

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

Metals and/or inorganics were not analyzed as part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes \square No \square N/A \boxtimes Comments:

MS and MSD samples were not analyzed for this work order.

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes \square No \square N/A \boxtimes Comments:

MS and MSD samples were not analyzed for this work order.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

NA; MS and MSD samples were not analyzed for this work order.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

MS and MSD samples were not analyzed for this work order.

Laboratory Report Date:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability were not affected; see above.

d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only

i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

There were no IDA recovery failures associated with this work order.

iv. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

e. Trip Blanks

i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \square No \square N/A \boxtimes Comments:

PFAS are not volatile compounds. A trip blank is not required for the requested analysis.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \square No \square N/A \boxtimes Comments:

A trip blank is not required for the requested analysis.

iii. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

A trip blank is not required for the requested analysis.

Laboratory Report Date:

iv. If above LOQ or project specified objectives, what samples are affected? Comments:

NA; a trip blank is not required for the requested analysis.

v. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \square No \square N/A \boxtimes Comments:

Only one project sample was submitted.

ii. Submitted blind to lab?

Yes \square No \square N/A \boxtimes Comments:

Only one project sample was submitted.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:

$$\frac{(R_1 - R_2)}{((R_1 + R_2)/2)} \times 100$$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \square No \square N/A \boxtimes Comments:

N/A; only one sample was submitted.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

N/A; see above.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

Reusable equipment was not used for sample collection. Therefore, decontamination or equipment blank samples were not required. A peri-pump was used to collect the requested analytes.

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

See above.

Laboratory Report Date:

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

N/A; see above.

iii. Data quality or usability affected?

Comments:

No; see above.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?

Yes \square No \square N/A \boxtimes Comments:

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks 2355 Hill Rd Fairbanks, AK 99707 (907)479-0600

Report Number: 1211184

Client Project: 102519-005 Plum Stop

Dear Marcy Nadel,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins Project Manager Jennifer.Dawkins@sgs.com Date

Print Date: 03/25/2021 2:45:28PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks SGS Project: 1211184 Project Name/Site: 102519-005 Plum Stop Project Contact: Marcy Nadel

Refer to sample receipt form for information on sample condition.

MW-1903-20 (1211184001) PS

200.8- Metals- The LOQs are elevated due to matrix interference.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 03/25/2021 2:45:30PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.

Print Date: 03/25/2021 2:45:32PM

Note:

Sample Summary									
<u>Client Sample ID</u> MW-1903-20	<u>Lab Sample ID</u> 1211184001	<u>Collected</u> 03/16/2021	<u>Received</u> 03/18/2021	<u>Matrix</u> Water (Surface, Eff., Ground)					
MethodMethod DescriptionSM 5310BDissolved Organic CarbonEP200.8Metals in Water by 200.8 ICP-MS									
SM 5310B	Total Organ	ic Carbon							

Print Date: 03/25/2021 2:45:34PM

Detectable Results Summary

Client Sample ID: MW-1903-20			
Lab Sample ID: 1211184001	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Calcium	83700J	ug/L
	Magnesium	20900	ug/L
Waters Department	TOC Average, Dissolved	3580	ug/L
	Total Organic Carbon Average	9350	ug/L

Print Date: 03/25/2021 2:45:36PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-1903-20							
Client Sample ID: MW-1903-20 Client Project ID: 102519-005 Plum S f Lab Sample ID: 1211184001 Lab Project ID: 1211184	R M S	ollection Da eceived Da latrix: Wate olids (%): ocation:	te: 03/18/	21 09:05			
Results by Metals by ICP/MS							
<u>Parameter</u> Calcium Magnasium	<u>Result Qual</u> 83700 J 20900	<u>LOQ/CL</u> 125000 12500	<u>DL</u> 37500 3750	<u>Units</u> ug/L	<u>DF</u> 50 50	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 03/23/21 18:52 03/23/21 18:52
Magnesium Batch Information	20900	12500	3750	ug/L	50		03/23/21 16.32
Analytical Batch: MMS11044 Analytical Method: EP200.8 Analyst: DMM Analytical Date/Time: 03/23/21 18:52 Container ID: 1211184001-C		F	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: E200.2 me: 03/22/2 /t./Vol.: 4 m	ıL		

Print Date: 03/25/2021 2:45:38PM

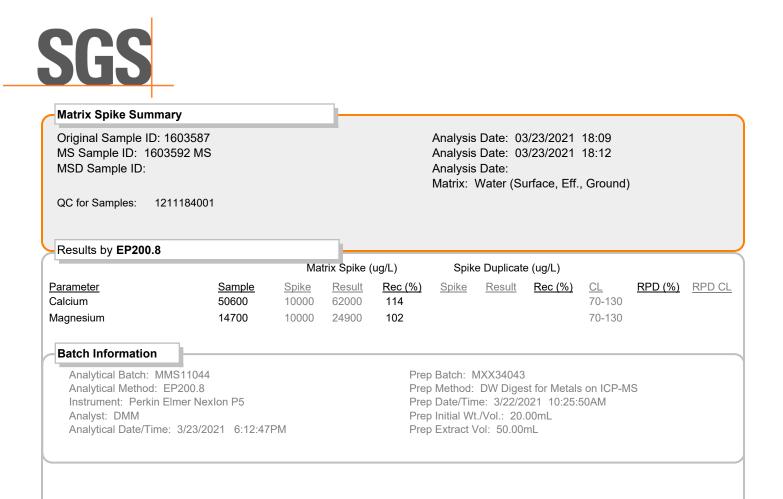
SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Client Sample ID: MW-1903-20 Client Project ID: 102519-005 Plum St ab Sample ID: 1211184001 ab Project ID: 1211184	Ri M So	ollection D eceived Da atrix: Wate blids (%): ocation:					
Results by Waters Department			_				
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
OC Average, Dissolved	3580	1000	400	ug/L	1		03/24/21 19:07
otal Organic Carbon Average	9350	1000	400	ug/L	1		03/24/21 17:08
atch Information							
Analytical Batch: WTC3080 Analytical Method: SM 5310B Analys: IJV Analytical Date/Time: 03/24/21 17:08 Container ID: 1211184001-A Analytical Batch: WTC3080 Analytical Method: SM 5310B Analys: IJV Analytical Date/Time: 03/24/21 19:07 Container ID: 1211184001-B							

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com


Member of SGS Group

QC for Samples: 1211184001					
Results by EP200.8					
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	
Calcium	250U	500	150	ug/L	
Magnesium	25.0U	50.0	15.0	ug/L	
atch Information Analytical Batch: MMS Analytical Method: EP2			tch: MXX34043 ethod: E200.2	}	
Instrument: Perkin Elm				021 10:25:50AM	
Analyst: DMM		Prep Ini	tial Wt./Vol.: 20	mL	
Analytical Date/Time: 3	3/23/2021 6:03:44PM	Prep Ex	tract Vol: 50 ml	-	

Print Date: 03/25/2021 2:45:42PM

•							
Blank Spike Summary							
Blank Spike ID: LCS for HE Blank Spike Lab ID: 16035 Date Analyzed: 03/23/202	10	43]	Matrix: Water (Surface, Eff., Ground)				
QC for Samples: 121118	34001						
Results by EP200.8							
	Blank Spi	ke (ug/L)					
<u>Parameter</u>	Spike Result	<u>Rec (%)</u>	CL				
Calcium	10000 10000	100	(85-115)				
Magnesium	10000 10500	105	(85-115)				
Batch Information							
Analytical Batch: MMS1104 Analytical Method: EP200.8 Instrument: Perkin Elmer N Analyst: DMM			Prep Batch: MXX34043 Prep Method: E200.2 Prep Date/Time: 03/22/2021 10:25 Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:				
Print Date: 03/25/2021 2:45:45PM	200 West Po						

Print Date: 03/25/2021 2:45:47PM

Method Blank	ī
Blank ID: MB for HBN 1817159 [WTC/3080] Blank Lab ID: 1603954 QC for Samples: 1211184001	Matrix: Water (Surface, Eff., Ground)
Results by SM 5310B]
Parameter <u>Results</u> Total Organic Carbon Average 500U	LOQ/CL DL Units 1000 400 ug/L
Batch Information Analytical Batch: WTC3080 Analytical Method: SM 5310B Instrument: TOC Analyzer 2 Analyst: IJV Analytical Date/Time: 3/24/2021 12:34:44PM	

Print Date: 03/25/2021 2:45:49PM

SGS	

Blank Spike Summary	
Blank Spike ID: LCS for HBN 1211184 [WTC3080] Blank Spike Lab ID: 1603952 Date Analyzed: 03/24/2021 12:20 Matri	ix: Water (Surface, Eff., Ground)
QC for Samples: 1211184001	
Results by SM 5310B	
Blank Spike (ug/L)	
Parameter Spike Result Rec (%)	<u>CL</u>
Total Organic Carbon Average 75000 73400 98	(80-120)
Batch Information	
Analytical Batch: WTC3080 Analytical Method: SM 5310B Instrument: TOC Analyzer 2 Analyst: IJV	
Print Date: 03/25/2021 2:45:53PM	
Print Date: 03/25/2021 2:45:53PM	

SGS

I										
Matrix Spike Summary										
Original Sample ID: 1211135 MS Sample ID: 1603967 MS MSD Sample ID: 1603968 M	ISD				Analysis Analysis	Date: 03 Date: 03	/24/2021 /24/2021 /24/2021 /rface, Eff.,	13:51 14:06		
QC for Samples: 121118400	1									
Results by SM 5310B										
		Mat	rix Spike (ug/L)	Spike	e Duplicate	e (ug/L)			
<u>Parameter</u> Total Organic Carbon Average	<u>Sample</u> 500U	<u>Spike</u> 10000	<u>Result</u> 9670	<u>Rec (%)</u> 97	<u>Spike</u> 10000	<u>Result</u> 9740	<u>Rec (%)</u> 97	<u>CL</u> 75-125	<u>RPD (%)</u> 0.67	<u>RPD CL</u> (< 25)
Batch Information										
Analytical Batch: WTC3080 Analytical Method: SM 5310E Instrument: TOC Analyzer 2 Analyst: IJV Analytical Date/Time: 3/24/20		M								
Print Date: 03/25/2021 2:45:55PM										

CHAIN GEOTECHNICAL AND ENVILSON, INC. 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600			NIN-C)F-C	US	ΓOD	Analy	/tical Me	thods (in	clude pres	Labora Attn: _ servative	Jan D.	Page 	/of/
www.shannonwilson.cor	T Quote No:	Yes	No Date Sampled		0 ¹ 0	571018 571018	No. XX	1-17-55				ja ^r / c	Kemarson omposition ample Con	/Grab?
MW-1903-20			3~/6-21								3	Ground		
Project Information Number: 102519-005 Name: Plum Stop Contact: MDN Ongoing Project? Yes No Sampler: TKR No Distribution: White - w/shipment - returner Yellow - w/shipment - for cor Pink - Shannon & Wilson - jo	Total No. of Contain COC Seals/Intact? Received Good Cor Temp: 5_6 Delivery Method: tes: d to Shannon & Wilso	Y/N/NA nd./Cold	Ska Signa	Ad Name: Ad Nam	ished By Riste Wilse iyed By: Daw	Time: <u>13:</u> <u>Bate: 3 - 1</u> <u>Bate: 3 - 1</u> <u>Constance</u> <u>Time:</u> <u>3</u>	22 Sign	ature:	hished E	Time: Date: U(17-21(F	Printed Name:	1.2°C	Time:

No. 14 36320

e-Sample Receipt Form FBK

SGS	SGS Workorder #:		S&W		S&W
Review Crite	ria	Condition (Yes,	No, N/A		otions Noted below
	/ / Temperature Requir			Exemption perm	hitted if sampler hand carries/delivers.
Were Cus	tody Seals intact? Note # & I	location Yes			
	COC accompanied sa				
DOD: Were samples rece	ived in COC corresponding c				
				the second se	les where chilling is not required
Temperature blank c	ompliant* (i.e., 0-6 °C afte	r CF)? Yes	Cooler ID:	1	@ 5.6 °C Therm. ID: D50
			Cooler ID:		@ °C Therm. ID:
If samples received without a temperature b documented instead & "COOLER TEMP" will be r	lank, the "cooler temperature" will noted to the right, "ambient" or "chi	be illed" will	Cooler ID:		@ °C Therm. ID:
be noted if neither i			Cooler ID:		@ °C Therm. ID:
*lf >6°C, were si	amples collected <8 hours	ago?			
lf <0°C, w	vere sample containers ice	free?			
	S-0029 if more space is n				
				to form F-083 "Sa	mple Guide" for specific holding times.
Do samples match COC ** (i.e.,sa					
**Note: If times differ <1hr, re			1		
***Note: If sample information on containers differ	and a second				
Were samples in good condi	tion (no leaks/cracks/brea	kage)?			•
Were analytical requests clear? (i.e., with multiple option	method is specified for ar n for analysis (Ex: BTEX, I				
Were Trip Blanks (i.e., VOAs	s, LL-Hg) in cooler with sar	mples? N/A			
Were all water VOA vials free of he	a ya kata kata kata kata kuta kata kata kuta k				
Were all soil VOAs	field extracted with MeOH	+BFB? N/A			
For Rush/Short Hold Time,	was RUSH/Short HT emai	il sent? N/A			
Note to Client: Any "No	", answer above indicates no				may impact data quality.
이 10년 10년 1월 2011년. 1	Additiona	al notes (if a	pplicable):		
SGS Profile #	3507	'32		350	732

e-Sample Receipt Form

ł

000	e-Sam <u>p</u>	le Receipt	t Form	1		
SGS	SGS Workorder #:	1	211	184	1 2	1 1 1 8 4
Re	eview Criteria	Condition (Yes,	No, N/A	Exce	eptions Note	ed below
Chain o	of Custody / Temperature Requir	ements		N/A Exemption per	rmitted if sample	er hand carries/delivers.
	Were Custody Seals intact? Note # & lo	ocation Yes	1F, 1B			
	COC accompanied sa	mples? Yes				
DOD: Were	samples received in COC corresponding co	oolers? N/A				
	N/A **Exemption permitted if c	chilled & colle	cted <8	hours ago, or for sam	ples where chil	ling is not required
Tempera	ature blank compliant* (i.e., 0-6 °C after	r CF)? Yes	Cooler	ID: 1	@	1.2 °C Therm. ID: D45
			Cooler	ID:	@	°C Therm. ID:
	a temperature blank, the "cooler temperature" will I		Cooler	ID:	@	°C Therm. ID:
	TEMP" will be noted to the right. "ambient" or "chil noted if neither is available.		Cooler	ID:	@	°C Therm. ID:
			Cooler	ID:	@	°C Therm. ID:
*If >0	6°C, were samples collected <8 hours	ago? N/A				
	If <0°C, were sample containers ice	free? N/A				
Note: Identify contair	ners received at non-compliant tempera Use form FS-0029 if more space is ne					
Holding Time /	Documentation / Sample Condition Re	quirements	Note: Re	fer to form F-083 "Sampl	le Guide" for spec	ific holding times.
	Were samples received within holding	time? Yes				
Do samples match CC	DC** (i.e.,sample IDs,dates/times colle	cted)? Yes				
**Note: If times di	iffer <1hr, record details & login per CC	DC.				
***Note: If sample information on o	containers differs from COC, SGS will default to C	OC information				
	clear? (i.e., method is specified for and ultiple option for analysis (Ex: BTEX, M	-				
				N/A ***Exemption	permitted for m	etals (e.g,200.8/6020B).
Were proper containe	ers (type/mass/volume/preservative***)	used? No		ontainer was field fil st as per PM.	tered and pres	erved by client. Proceed
	Volatile / LL-Hg Requ	uirements				
Were Trip Blanks	s (i.e., VOAs, LL-Hg) in cooler with sam	nples? N/A				
Were all water VOA via	als free of headspace (i.e., bubbles \leq 6	Smm)? N/A				
Were al	I soil VOAs field extracted with MeOH+	BFB? N/A				
Note to Cli	ient: Any "No", answer above indicates non	-compliance	with star	ndard procedures and	I may impact da	ta quality.
		notes (if a		·		

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1211184001-A 1211184001-B 1211184001-C	HCL to pH < 2 HCL to pH < 2 HNO3 to pH < 2	ОК ОК ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

Laboratory Data Review Checklist

Completed By:

Justin Risley

Title:

Environmental Scientist

Date:

3/30/2021

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

SGS North America, Inc.

Laboratory Report Number:

1211184

Laboratory Report Date:

3/25/2021

CS Site Name:

Fairbanks DOT&PF PFAS

ADEC File Number:

100.38.277

Hazard Identification Number:

26816

Laboratory Report Date:

3/25/2021

CS Site Name:

Fairbanks DOT&PF PFAS

Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	Yes \boxtimes No \square N/A \square Comments:
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	Yes No N/A Comments:
	Analyses were performed by SGS North America, Inc. in Anchorage, AK.
2. <u>c</u>	Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	Yes No N/A Comments:
	b. Correct analyses requested?
	Yes \boxtimes No \square N/A \square Comments:
3. <u>I</u>	Laboratory Sample Receipt Documentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	Yes \boxtimes No \square N/A \square Comments:
	Sample cooler temperature recorded at 1.2° C upon receipt at laboratory in Fairbanks, and 5.6° C upon
	receipt in Anchorage.

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \boxtimes No \square N/A \square Comments:

Lab D

Laboratory Report Date:				
3/25/2021				
CS Site Name:				
Fairbanks DOT&PF PFAS				
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes⊠ No□ N/A□ Comments:				
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?				
$Yes \boxtimes No \square N/A \square Comments:$				
The project sample was preserved prior to filtration for the DOC analysis.				
e. Data quality or usability affected?				
Comments:				
No, see above.				
4. <u>Case Narrative</u>				
a. Present and understandable?				
Yes \boxtimes No \square N/A \square Comments:				
b. Discrepancies, errors, or QC failures identified by the lab?				
Yes No N/A \boxtimes Comments:				
200.8- Metals- The LOQs are elevated due to matrix interference.				
c. Were all corrective actions documented?				
Yes \square No \square N/A \boxtimes Comments:				
N/A, see above.				
d. What is the effect on data quality/usability according to the case narrative?				
Comments:				
The case narrative does not specify an effect on data quality/usability.				

Laboratory Report Date:

3/25/2021

CS Site Name:

Fairbanks DOT&PF PFAS

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \square No \square N/A \boxtimes Comments:

N/A; the requested analytes were detected in the project sample.

e. Data quality or usability affected?

No, see above.

6. QC Samples

a. Method Blank

i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives? Vec X No X N/A Z Comments:

 $Yes \boxtimes No \square N/A \square Comments:$

Laboratory Report Date:

3/25/2021

CS Site Name:

Fairbanks DOT&PF PFAS

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

There were no detections in the method blank samples associated with this work order.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

v. Data quality or usability affected?

Comments:

No, see above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

An LCS was reported for TOC analysis.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

An LCS was reported for calcium and magnesium analyses.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \boxtimes Comments:

LCSD samples were not reported for TOC, calcium, or magnesium.

Laboratory Report Date:

3/25/2021

CS Site Name:

Fairbanks DOT&PF PFAS

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Percent recoveries were within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

No, see above.

- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
 - i. Organics One MS/MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

MS/MSD samples were reported for total organic carbon analysis.

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

One MS sample was reported for calcium and magnesium analyses. We do not have a measure of analytical precision for these analyses.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes \boxtimes No \square N/A \square Comments:

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

3/25/2021

CS Site Name:

Fairbanks DOT&PF PFAS

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Percent recovery and RPD were within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

No, see above.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes \square No \square N/A \boxtimes Comments:

Surrogates are not reported for these analyses.

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

iv. Data quality or usability affected?

Comments:

No; see above.

Laboratory Report Date:

3/25/2021

CS Site Name:

Fairbanks DOT&PF PFAS

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \square No \square N/A \boxtimes Comments:

Analysis for volatile compounds was not requested with this work order. Trip blank is not required.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

iii. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

N/A; see above.

v. Data quality or usability affected?

Comments:

No, see above.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \square No \boxtimes N/A \square Comments:

Only one sample was submitted for this work order.

ii. Submitted blind to lab?

N/A; see above.

Laboratory Report Date:

3/25/2021

CS Site Name:

Fairbanks DOT&PF PFAS

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

No, see above.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

The project samples were collected using non-reusable equipment. An equipment blank is not required.

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

See above.

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

N/A; see above

iii. Data quality or usability affected?

Comments:

No, see above.

Laboratory Report Date:

3/25/2021

CS Site Name:

Fairbanks DOT&PF PFAS

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes \square No \square N/A \boxtimes Comments:

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-71497-1

Client Project/Site: Plume Stop Revision: 1

For:

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Marcy Nadel

Authorized for release by: 3/31/2021 4:52:39 PM

David Alltucker, Project Manager I (916)374-4383 David.Alltucker@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	8
QC Sample Results	9
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	23

Definitions/Glossary

3

5

Qualifiers

	MC
LU	
	-

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 320-71497-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-71497-1

Receipt

The sample was received on 3/19/2021 1:30 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 5.4° C.

LCMS

Method EPA 537(Mod): The matrix spike recovery for preparation batch 320-473069 and analytical batch 320-474121 was outside control limits for Perfluorooctanesulfonamide (FOSA). Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method EPA 537(Mod): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for 13C2 PFTeDA in the following continuing calibration verification (CCV): (CCV 320-474121/13). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following sample contains a black sediments at the bottom of the bottle prior to extraction:MW-1903-20 (320-71497-1).

Method 3535: During the solid phase extraction process, the following samples contain non-settable particulates which clogged the solid phase extraction column:MW-1903-20 (320-71497-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Shannon & Wilson, Inc Project/Site: Plume Stop

Client Sample ID: MW-1903-20

Lab Sample ID: 320-71497-1

Job ID: 320-71497-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Perfluorobutanesulfonic acid (PFBS)	0.29	J	1.8	0.18	ng/L	1	_	EPA 537(Mod)	Total/NA	
Perfluorobutanoic acid (PFBA)	22		4.4	2.1	ng/L	1		EPA 537(Mod)	Total/NA	- 22
Perfluoropentanoic acid (PFPeA)	23		1.8	0.43	ng/L	1		EPA 537(Mod)	Total/NA	

3/31/2021 (Rev. 1)

Client Sample ID: MW-1903-20 Date Collected: 03/16/21 14:26 Date Received: 03/19/21 13:30

Lab Sample ID: 320-71497-1

Matrix: Water

ND								
		1.8	0.51	ng/L		03/23/21 12:35	03/26/21 06:14	1
ND		1.8	0.22	-		03/23/21 12:35	03/26/21 06:14	1
ND		1.8	0.75	ng/L		03/23/21 12:35	03/26/21 06:14	1
ND		1.8				03/23/21 12:35	03/26/21 06:14	1
ND		1.8		-		03/23/21 12:35	03/26/21 06:14	1
ND		1.8		-		03/23/21 12:35	03/26/21 06:14	1
ND		1.8						1
ND		1.8		-				1
ND		1.8		-		03/23/21 12:35	03/26/21 06:14	1
	J	1.8				03/23/21 12:35	03/26/21 06:14	1
				-				
ND		1.8		-		03/23/21 12:35	03/26/21 06:14	1
ND		1.8	0.48	ng/L				1
ND		4.4		-				1
ND		4.4		-		03/23/21 12:35	03/26/21 06:14	1
ND		1.8		-		03/23/21 12:35	03/26/21 06:14	1
ND		3.5				03/23/21 12:35	03/26/21 06:14	1
ND		1.8		-		03/23/21 12:35	03/26/21 06:14	1
ND		1.8		-		03/23/21 12:35	03/26/21 06:14	1
ND		1.8	0.28	ng/L		03/23/21 12:35	03/26/21 06:14	1
ND		4.4		-		03/23/21 12:35	03/26/21 06:14	1
ND		1.8				03/23/21 12:35	03/26/21 06:14	1
22		4.4	2.1	ng/L		03/23/21 12:35	03/26/21 06:14	1
23		1.8	0.43	ng/L		03/23/21 12:35	03/26/21 06:14	1
ND		1.8	0.87	ng/L		03/23/21 12:35	03/26/21 06:14	1
ND		1.8	0.17	ng/L		03/23/21 12:35	03/26/21 06:14	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
85		50 - 150				<u> </u>		1
90		50 - 150				03/23/21 12:35	03/26/21 06:14	1
86		50 - 150				03/23/21 12:35	03/26/21 06:14	1
89		50 - 150						1
								1
77								1
								1
								1
								1
								1
								1
								1
								1
								1
								1
90		50 - 150						1
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND	ND 1.8 ND 4.4 ND 4.4 ND 1.8 ND 1.8	ND 1.8 0.27 ND 1.8 0.49 ND 1.8 0.49 ND 1.8 0.11 ND 1.8 0.18 ND 1.8 0.18 ND 1.8 0.18 ND 1.8 0.44 ND 1.8 0.48 ND 1.8 0.44 ND 4.4 1.1 ND 4.4 1.1 ND 1.8 0.21 ND 1.8 0.21 ND 1.8 0.28 ND 1.8 0.44 22 4.4 2.1 23 1.8 0.43 ND 1.8 0.17 90 50.150 50.150	ND 1.8 0.27 ng/L ND 1.8 0.49 ng/L ND 1.8 0.65 ng/L ND 1.8 0.65 ng/L ND 1.8 0.65 ng/L ND 1.8 0.50 ng/L ND 1.8 0.48 ng/L ND 4.4 1.1 ng/L ND 4.4 1.1 ng/L ND 1.8 0.21 ng/L ND 1.8 0.28 ng/L ND 1.8 0.28 ng/L ND 1.8 0.28 ng/L ND 1.8 0.41 ng/L 22 4.4 2.1 ng/L ND 1.8 0.43	ND 1.8 0.27 ng/L ND 1.8 0.49 ng/L ND 1.8 0.49 ng/L ND 1.8 0.14 ng/L ND 1.8 0.18 ng/L ND 1.8 0.18 ng/L ND 1.8 0.18 ng/L ND 1.8 0.48 ng/L ND 1.8 0.48 ng/L ND 4.4 1.1 ng/L ND 4.4 1.1 ng/L ND 4.4 1.1 ng/L ND 1.8 0.21 ng/L ND 1.8 0.28 ng/L ND 1.8 0.28 ng/L ND 1.8 0.28 ng/L ND 1.8 0.28 ng/L ND 1.8 0.41 ng/L 22 4.4 2.1 ng/L ND 1.8 0.17	ND 1.8 0.27 ng/L 03/23/21 12:35 ND 1.8 0.49 ng/L 03/23/21 12:35 ND 1.8 0.49 ng/L 03/23/21 12:35 ND 1.8 0.41 ng/L 03/23/21 12:35 ND 1.8 0.65 ng/L 03/23/21 12:35 ND 1.8 0.65 ng/L 03/23/21 12:35 ND 1.8 0.48 ng/L 03/23/21 12:35 ND 1.8 0.48 ng/L 03/23/21 12:35 ND 4.4 1.1 ng/L 03/23/21 12:35 ND 1.8 0.21 ng/L 03/23/21 12:35 ND 1.8 0.21 ng/L 03/23/21 12:35 ND 1.8 0.28 ng/L 03/23/21 12:35 ND 1.8 0.41 ng/L 03/23/21 12:35 ND 1.8	ND 1.8 0.27 ng/L 03/23/21 12:35 03/26/21 06:14 ND 1.8 0.49 ng/L 03/23/21 12:35 03/26/21 06:14 ND 1.8 0.49 ng/L 03/23/21 12:35 03/26/21 06:14 ND 1.8 0.65 ng/L 03/23/21 12:35 03/26/21 06:14 ND 1.8 0.56 ng/L 03/23/21 12:35 03/26/21 06:14 ND 1.8 0.48 ng/L 03/23/21 12:35 03/26/21 06:14 ND 1.8 0.44 ng/L 03/23/21 12:35 03/26/21 06:14 ND 1.8 0.21 ng/L 03/23/21 12:35 03/26/21 06:14 ND 1.8 0.21 ng/L 03/23/21 12:35 03/26/21 06:14 ND 1.8 0.28 ng/L 03/23/21 12:35 03/26/21 06:14 ND<

Job ID: 320-71497-1

Client Sample ID: MW-1903-20 Date Collected: 03/16/21 14:26 Date Received: 03/19/21 13:30

Lab Sample ID: 320-71497-1

Matrix: Water

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)								
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac			
M2-8:2 FTS	87	50 - 150	03/23/21 12:35	03/26/21 06:14	1			
13C4 PFBA	78	50 - 150	03/23/21 12:35	03/26/21 06:14	1			

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Matrix: Water

Prep Type: Total/NA

5

6 7

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance Li	imits)	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150
320-71489-A-1-A MS	Matrix Spike	97	101	97	97	92	91	96	125
320-71489-A-1-B MSD	Matrix Spike Duplicate	96	101	94	98	95	86	85	122
320-71497-1	MW-1903-20	85	90	86	89	89	77	82	112
LCS 320-473069/2-A	Lab Control Sample	96	100	96	97	95	85	92	130
MB 320-473069/1-A	Method Blank	86	103	94	94	98	87	93	133
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance Li	imits)	
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA	PFOSA	M262FT
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150
320-71489-A-1-A MS	Matrix Spike	84	93	85	95	93	96	81	100
320-71489-A-1-B MSD	Matrix Spike Duplicate	80	94	82	98	93	99	83	99
320-71497-1	MW-1903-20	78	86	81	90	90	90	76	90
LCS 320-473069/2-A	Lab Control Sample	81	94	89	94	98	93	88	98
MB 320-473069/1-A	Method Blank	84	94	92	104	95	77	82	110
			Perce	ent Isotope	Dilution Re	ecovery (Ac	ceptance Li	imits)	
		PFPeA	M282FTS	PFBA					
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)					
320-71489-A-1-A MS	Matrix Spike	85	85	81					
320-71489-A-1-B MSD	Matrix Spike Duplicate	95	80	87					
320-71497-1	MW-1903-20	78	87	78					
LCS 320-473069/2-A	Lab Control Sample	89	97	93					
MB 320-473069/1-A	Method Blank	82	94	87					
Surrogate Legend									
PFHxA = 13C2 PFHxA									
C4PFHA = 13C4 PFHp	A								

PFOA = 13C4 PFOA PFNA = 13C5 PFNA PFDA = 13C2 PFDA PFUnA = 13C2 PFUnA PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA C3PFBS = 13C3 PFBS PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA PFOSA = 13C8 FOSA M262FTS = M2-6:2 FTS PFPeA = 13C5 PFPeA M282FTS = M2-8:2 FTS PFBA = 13C4 PFBA

Perfluorohexanoic acid (PFHxA)

Perfluoroheptanoic acid (PFHpA)

Perfluorooctanoic acid (PFOA)

Perfluorononanoic acid (PFNA)

Perfluorodecanoic acid (PFDA)

Perfluoroundecanoic acid (PFUnA)

Perfluorododecanoic acid (PFDoA)

Perfluorotridecanoic acid (PFTriA)

Perfluorotetradecanoic acid (PFTeA)

Perfluorobutanesulfonic acid (PFBS)

Perfluorooctanesulfonic acid (PFOS)

cetic acid (NMeFOSAA)

etic acid (NEtFOSAA)

e-1-sulfonic acid

Acid (HFPO-DA)

e-1-sulfonic acid

(ADONA)

6:2 FTS

8:2 FTS

(PFHpS)

N-methylperfluorooctanesulfonamidoa

N-ethylperfluorooctanesulfonamidoac

9-Chlorohexadecafluoro-3-oxanonan

11-Chloroeicosafluoro-3-oxaundecan

4,8-Dioxa-3H-perfluorononanoic acid

Perfluorodecanesulfonic acid (PFDS)

Perfluorobutanoic acid (PFBA)

Perfluoroheptanesulfonic Acid

Perfluoropentanoic acid (PFPeA)

Perfluorooctanesulfonamide (FOSA)

Hexafluoropropylene Oxide Dimer

Perfluorohexanesulfonic acid (PFHxS)

Analyte

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

MB MB

Result Qua

ND

MB MB

Lab Sample ID: MB 320-473069/1-A Matrix: Water Analysis Batch: 474121

	otal/NA	le ID: Method Prep Type: To						
5	473069	Prep Batch:						
	Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	lifier
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.58	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.25	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.85	2.0	
_	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.27	2.0	
8	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.31	2.0	
U	1	03/26/21 05:00	03/23/21 12:35		ng/L	1.1	2.0	
0	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.55	2.0	
3	1	03/26/21 05:00	03/23/21 12:35		ng/L	1.3	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.73	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.20	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.57	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.54	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	1.2	5.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	1.3	5.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.24	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	1.5	4.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.32	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.40	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.32	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	2.5	5.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.46	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	2.4	5.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.49	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.98	2.0	
	1	03/26/21 05:00	03/23/21 12:35		ng/L	0.19	2.0	

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		50 - 150	03/23/21 12:35	03/26/21 05:00	1
13C4 PFHpA	103		50 - 150	03/23/21 12:35	03/26/21 05:00	1
13C4 PFOA	94		50 - 150	03/23/21 12:35	03/26/21 05:00	1
13C5 PFNA	94		50 - 150	03/23/21 12:35	03/26/21 05:00	1
13C2 PFDA	98		50 - 150	03/23/21 12:35	03/26/21 05:00	1
13C2 PFUnA	87		50 - 150	03/23/21 12:35	03/26/21 05:00	1
13C2 PFDoA	93		50 - 150	03/23/21 12:35	03/26/21 05:00	1
13C2 PFTeDA	133		50 - 150	03/23/21 12:35	03/26/21 05:00	1
13C3 PFBS	84		50 - 150	03/23/21 12:35	03/26/21 05:00	1
18O2 PFHxS	94		50 - 150	03/23/21 12:35	03/26/21 05:00	1
13C4 PFOS	92		50 - 150	03/23/21 12:35	03/26/21 05:00	1
d3-NMeFOSAA	104		50 - 150	03/23/21 12:35	03/26/21 05:00	1
d5-NEtFOSAA	95		50 - 150	03/23/21 12:35	03/26/21 05:00	1
13C3 HFPO-DA	77		50 - 150	03/23/21 12:35	03/26/21 05:00	1
13C8 FOSA	82		50 - 150	03/23/21 12:35	03/26/21 05:00	1
M2-6:2 FTS	110		50 - 150	03/23/21 12:35	03/26/21 05:00	1

Analysis Batch: 474121

Matrix: Water

QC Sample Results

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 473069 Analyzed Dil Fac Prep Type: T **Prep Batch:** %Rec. Limits 72 - 129 72 - 130

) 1	
) 1	
Sample Fotal/NA	8
473069	
	1

MB MB Isotope Dilution %Recovery Qualifier Limits Prepared 13C5 PFPeA 82 50 - 150 03/23/21 12:35 03/26/21 05:00 M2-8:2 FTS 50 - 150 03/23/21 12:35 03/26/21 05:00 94 13C4 PFBA 87 50 - 150 03/23/21 12:35 03/26/21 05:00 Lab Sample ID: LCS 320-473069/2-A **Client Sample ID: Lab Control Matrix: Water** Analysis Batch: 474121 LCS LCS Spike Added Result Qualifier Analyte Unit D %Rec Perfluorohexanoic acid (PFHxA) 40.0 41.7 104 ng/L Perfluoroheptanoic acid (PFHpA) 40.0 41.2 ng/L 103

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) Lab Sample ID: MB 320-473069/1-A

					E	Eurofins Tes	stAmerica, Sa	cramento
13C2 PFHxA	96		50 - 150					
Isotope Dilution	%Recovery	Qualifier	Limits					
	LCS							
Perfluoroheptanesulfonic Acid (PFHpS)			38.1	42.8	ng/L	112	69 - 134	
(FOSA)					ny/∟			
Perfluoropentanoic acid (PFPeA) Perfluorooctanesulfonamide			40.0 40.0	40.7 45.5	ng/L ng/L	102 114	72 - 129 67 - 137	
Perfluorobutanoic acid (PFBA)			40.0	41.0	ng/L	102	73 - 129 73 - 120	
					ng/L	113		
6:2 FTS 8:2 FTS			37.9 38.3	43.3 43.3	ng/L	114 112	64 - 140 67 - 138	
Perfluorodecanesulfonic acid (PFDS)			38.6	37.4	ng/L	97	53 - 142	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)			37.7	43.3	ng/L	115	81 - 141	
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid			37.7	42.3	ng/L	112	76 - 136	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)			40.0	41.0	ng/L	103	72 - 132	
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid			37.3	40.6	ng/L	109	77 - 137	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)			40.0	38.8	ng/L	97	61 - 135	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)			40.0	42.3	ng/L	106	65 - 136	
Perfluorooctanesulfonic acid (PFOS)			37.1	36.5	ng/L	98	65 - 140	
(PFHxS)					-			
(PFBS) Perfluorohexanesulfonic acid			36.4	39.6	ng/L	109	68 - 131	
(PFTeA) Perfluorobutanesulfonic acid			35.4	39.3	ng/L	111	72 - 130	
(PFTriA) Perfluorotetradecanoic acid			40.0	37.7	ng/L	94	71 - 132	
(PFDoA) Perfluorotridecanoic acid			40.0	46.7	ng/L	117	65 - 144	
(PFUnA) Perfluorododecanoic acid			40.0	39.2	ng/L	98	72 - 134	
Perfluoroundecanoic acid			40.0	51.3	ng/L	128	69 - 133	
Perfluorodecanoic acid (PFDA)			40.0	43.1	ng/L	108	71_129	
Perfluorononanoic acid (PFNA)			40.0	42.2	ng/L	105	69 - 130	
Perfluorooctanoic acid (PFOA)			40.0	41.7	ng/L	104	71 - 133	
Periluoroneplanoic acid (PPHPA)			40.0	41.2	ng/L	103	12 - 130	

Limits

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 ₋ 150 50 <u>-</u> 150

50 ₋ 150 50 <u>-</u> 150

Analysis Batch: 474121

Matrix: Water

Isotope Dilution

13C4 PFHpA

13C4 PFOA

13C5 PFNA

13C2 PFDA

13C2 PFUnA

13C2 PFDoA

13C3 PFBS

1802 PFHxS

13C4 PFOS

d3-NMeFOSAA

d5-NEtFOSAA

13C3 HFPO-DA

13C8 FOSA

M2-6:2 FTS

13C2 PFTeDA

Lab Sample ID: LCS 320-473069/2-A

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

LCS LCS

%Recovery Qualifier

100

96

97

95

85

92

130

81

94

89

94

98

93

88

98

	Job ID: 320-71497-1	
Client Sample ID:	Lab Control Sample Prep Type: Total/NA Prep Batch: 473069	
	Prep Batch. 473069	5
		8
		9

M2-8:2 FTS	97
13C4 PFBA	93
Lab Sample ID: 320-71489-	A-1-A MS

Matrix: Water Analysis Batch: 474121									Prep Type: Total/NA Prep Batch: 473069
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)	0.57	J	35.3	38.6		ng/L		108	72 - 129
Perfluoroheptanoic acid (PFHpA)	ND		35.3	37.5		ng/L		106	72 - 130
Perfluorooctanoic acid (PFOA)	ND		35.3	41.1		ng/L		117	71 - 133
Perfluorononanoic acid (PFNA)	ND		35.3	39.6		ng/L		112	69 - 130
Perfluorodecanoic acid (PFDA)	ND		35.3	39.3		ng/L		111	71 - 129
Perfluoroundecanoic acid (PFUnA)	ND		35.3	39.5		ng/L		112	69 - 133
Perfluorododecanoic acid	ND		35.3	32.8		ng/L		93	72 - 134
(PFDoA) Perfluorotridecanoic acid (PFTriA)	ND		35.3	36.2		ng/L		103	65 - 144
Perfluorotetradecanoic acid (PFTeA)	ND		35.3	36.5		ng/L		103	71 - 132
Perfluorobutanesulfonic acid (PFBS)	ND		31.2	33.3		ng/L		107	72 - 130
Perfluorohexanesulfonic acid (PFHxS)	ND		32.1	33.8		ng/L		105	68 - 131
Perfluorooctanesulfonic acid (PFOS)	7.3		32.7	37.1		ng/L		91	65 - 140
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		35.3	35.9		ng/L		102	65 - 136
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		35.3	32.9		ng/L		93	61 - 135
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	ND		32.9	34.1		ng/L		104	77 - 137
Hexafluoropropylene Oxide	ND		35.3	35.6		ng/L		101	72 - 132

Dimer Acid (HFPO-DA)

Eurofins TestAmerica, Sacramento

Client Sample ID: Matrix Spike

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: 320-71489 Matrix: Water Analysis Batch: 474121	-A-1-A MS						C	lient Sa	mple ID: Matrix Spike Prep Type: Total/NA Prep Batch: 473069
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	ND		33.2	33.4		ng/L		101	76 - 136
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		33.2	40.7		ng/L		122	81 - 141
Perfluorodecanesulfonic acid (PFDS)	ND		34.0	27.9		ng/L		82	53 - 142
6:2 FTS	24		33.4	59.4		ng/L		107	64 - 140
8:2 FTS	4.9		33.8	38.5		ng/L		100	67 - 138
Perfluorobutanoic acid (PFBA)	ND		35.3	35.4		ng/L		101	73 - 129
Perfluoropentanoic acid (PFPeA)	ND		35.3	35.1		ng/L		100	72 - 129
Perfluorooctanesulfonamide (FOSA)	ND	F1	35.3	49.8	F1	ng/L		141	67 - 137
Perfluoroheptanesulfonic Acid (PFHpS)	ND		33.6	38.4		ng/L		114	69 - 134
	MS	MS							
Isotope Dilution	%Recovery	Qualifier	Limits						
13C2 PFHxA	97		50 - 150						
13C4 PFHpA	101		50 - 150						
13C4 PFOA	97		50 - 150						
13C5 PFNA	97		50 - 150						
13C2 PFDA	92		50 - 150						
13C2 PFUnA	91		50 - 150						
13C2 PFDoA	96		50 - 150						
13C2 PFTeDA	125		50 - 150						
13C3 PFBS	84		50 - 150						
18O2 PFHxS	93		50 - 150						
13C4 PFOS	85		50 - 150						
d3-NMeFOSAA	95		50 - 150						
d5-NEtFOSAA	93		50 - 150						
13C3 HFPO-DA	96		50 - 150						
13C8 FOSA	81		50 - 150						
M2-6:2 FTS	100		50 - 150						
13C5 PFPeA	85		50 - 150						
M2-8:2 FTS	85		50 - 150						
13C4 PFBA	81		50 - 150						

Lab Sample ID: 320-71489-A-1-B MSD Matrix: Water Analysis Batch: 474121

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Analysis Batch: 474121									Prep Ba	tch: 47	73069
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	0.57	J	36.9	38.2		ng/L		102	72 - 129	1	30
Perfluoroheptanoic acid (PFHpA)	ND		36.9	41.9		ng/L		114	72 - 130	11	30
Perfluorooctanoic acid (PFOA)	ND		36.9	39.9		ng/L		108	71 - 133	3	30
Perfluorononanoic acid (PFNA)	ND		36.9	42.5		ng/L		115	69 - 130	7	30
Perfluorodecanoic acid (PFDA)	ND		36.9	37.4		ng/L		101	71 - 129	5	30
Perfluoroundecanoic acid (PFUnA)	ND		36.9	43.5		ng/L		118	69 - 133	10	30
Perfluorododecanoic acid (PFDoA)	ND		36.9	38.6		ng/L		105	72_134	16	30

8 9

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: 320-71489 Matrix: Water Analysis Batch: 474121	-A-1-B MSC)				Client	Samp	le ID: N	latrix Spil ∣Prep Ty Prep Ba	pe: Tot	al/NA
Analyte		Sample Qualifier	Spike Added	MSD Result	MSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Perfluorotridecanoic acid	ND	Guunner	36.9	43.6		ng/L		118	65 - 144	18	30
PFTriA)	ND		00.0	40.0		ng/E		110	00-144	10	00
Perfluorotetradecanoic acid	ND		36.9	36.4		ng/L		99	71 - 132	0	30
(PFTeA)						-					
Perfluorobutanesulfonic acid (PFBS)	ND		32.6	37.0		ng/L		114	72 - 130	11	30
Perfluorohexanesulfonic acid (PFHxS)	ND		33.6	37.5		ng/L		112	68 - 131	10	30
Perfluorooctanesulfonic acid PFOS)	7.3		34.2	39.3		ng/L		94	65 - 140	6	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		36.9	36.3		ng/L		98	65 - 136	1	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		36.9	34.7		ng/L		94	61 - 135	5	30
9-Chlorohexadecafluoro-3-oxan	ND		34.4	36.9		ng/L		107	77 - 137	8	30
onane-1-sulfonic acid						-					
Hexafluoropropylene Oxide	ND		36.9	36.1		ng/L		98	72 - 132	1	30
Dimer Acid (HFPO-DA)											
11-Chloroeicosafluoro-3-oxaund	ND		34.7	35.5		ng/L		102	76 - 136	6	30
ecane-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic	ND		34.7	43.5		ng/L		125	81 - 141	7	30
acid (ADONA) Perfluorodecanesulfonic acid	ND		35.5	31.6		ng/L		89	53 - 142	13	30
PFDS)			0010	0.110					00-112		
5:2 FTS	24		35.0	59.5		ng/L		103	64 - 140	0	30
3:2 FTS	4.9		35.3	43.9		ng/L		110	67 - 138	13	30
Perfluorobutanoic acid (PFBA)	ND		36.9	36.4		ng/L		99	73 - 129	3	30
Perfluoropentanoic acid (PFPeA)	ND		36.9	34.8		ng/L		94	72 - 129	1	30
Perfluorooctanesulfonamide	ND	F1	36.9	45.8		ng/L		124	67 - 137	8	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND		35.1	43.3		ng/L		123	69 - 134	12	30
(11)(0)	MSD	MSD									
sotope Dilution	%Recovery	Qualifier	Limits								
13C2 PFHxA	96		50 - 150								
13C4 PFHpA	101		50 - 150								
13C4 PFOA	94		50 - 150								
13C5 PFNA	98		50 - 150								
13C2 PFDA	95		50 - 150								
13C2 PFUnA	86		50 - 150								
13C2 PFDoA	85		50 - 150								
13C2 PFTeDA	122		50 - 150								
13C3 PFBS	80		50 - 150								
1802 PFHxS	94		50 - 150								
13C4 PFOS	82		50 - 150								
d3-NMeFOSAA	98		50 - 150								
d5-NEtFOSAA	93		50 - 150								
13C3 HFPO-DA	99		50 - 150								
13C8 FOSA	83		50 - 150 50 - 150								
M2-6:2 FTS	99		50 - 150 50 - 150								
13C5 PFPeA	99 95		50 - 150 50 - 150								
M2-8:2 FTS	95 80		50 - 150 50 - 150								

8

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) Lab Sample ID: 320-71489-A-1-B MSD Client Sample ID: Matrix Spike Duplicate Matrix: Water Prep Type: Total/NA Analysis Batch: 474121 Prep Batch: 473069 Isotope Dilution %Recovery Qualifier 13C4 PFBA 87 50-150

EPA 537(Mod)

EPA 537(Mod)

473069

473069

LCMS

Prep Batch: 473069

320-71489-A-1-A MS

320-71489-A-1-B MSD

Matrix Spike

Matrix Spike Duplicate

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-71497-1	MW-1903-20	Total/NA	Water	3535	
MB 320-473069/1-A	Method Blank	Total/NA	Water	3535	
_CS 320-473069/2-A	Lab Control Sample	Total/NA	Water	3535	
320-71489-A-1-A MS	Matrix Spike	Total/NA	Water	3535	
320-71489-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	3535	
nalysis Batch: 4741	121				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
320-71497-1	MW-1903-20	Total/NA	Water	EPA 537(Mod)	47306
MB 320-473069/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	47306
LCS 320-473069/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	473069

Total/NA

Total/NA

Water

Water

Matrix: Water

Lab Sample ID: 320-71497-1

Client Sample ID: MW-1903-20 Date Collected: 03/16/21 14:26 Date Received: 03/19/21 13:30

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			282.7 mL	10.00 mL	473069	03/23/21 12:35	LA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			474121	03/26/21 06:14	JY1	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: Shannon & Wilson, Inc Project/Site: Plume Stop Job ID: 320-71497-1

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

uthority	Program	Identification Number	Expiration Date
aska (UST)	State	17-020	02-20-24
В	Dept. of Defense ELAP	L2468	01-20-24
λВ	Dept. of Energy	L2468.01	01-20-24
В	ISO/IEC 17025	L2468	01-20-24
ona	State	AZ0708	08-11-21
ansas DEQ	State	88-0691	06-17-21
fornia	State	2897	01-31-22
orado	State	CA0004	08-31-21
necticut	State	PH-0691	06-30-21
rida	NELAP	E87570	06-30-21
orgia	State	4040	01-29-22
waii	State	<cert no.=""></cert>	01-29-22
Dis	NELAP	200060	03-18-22
Isas	NELAP	E-10375	10-31-21
siana	NELAP	01944	06-30-21
е	State	CA00004	04-14-22
nigan	State	9947	01-29-22
da	State	CA000442021-2	07-31-21
Hampshire	NELAP	2997	04-18-21
Jersey	NELAP	CA005	06-30-21
York	NELAP	11666	04-01-21
	State	41252	01-29-22
jon	NELAP	4040	01-30-23
nsylvania	NELAP	68-01272	03-31-21
IS	NELAP	T104704399-19-13	06-01-21
Fish & Wildlife	US Federal Programs	58448	07-31-21
DA	US Federal Programs	P330-18-00239	07-31-21
ו	NELAP	CA000442021-12	02-28-21 *
nont	State	VT-4040	04-16-21
nia	NELAP	460278	03-14-22
nington	State	C581	05-05-21
t Virginia (DW)	State	9930C	12-31-21
consin	State	998204680	08-31-21
oming	State Program	8TMS-L	01-28-19 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Shannon & Wilson, Inc Project/Site: Plume Stop

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.3, Table B-15	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

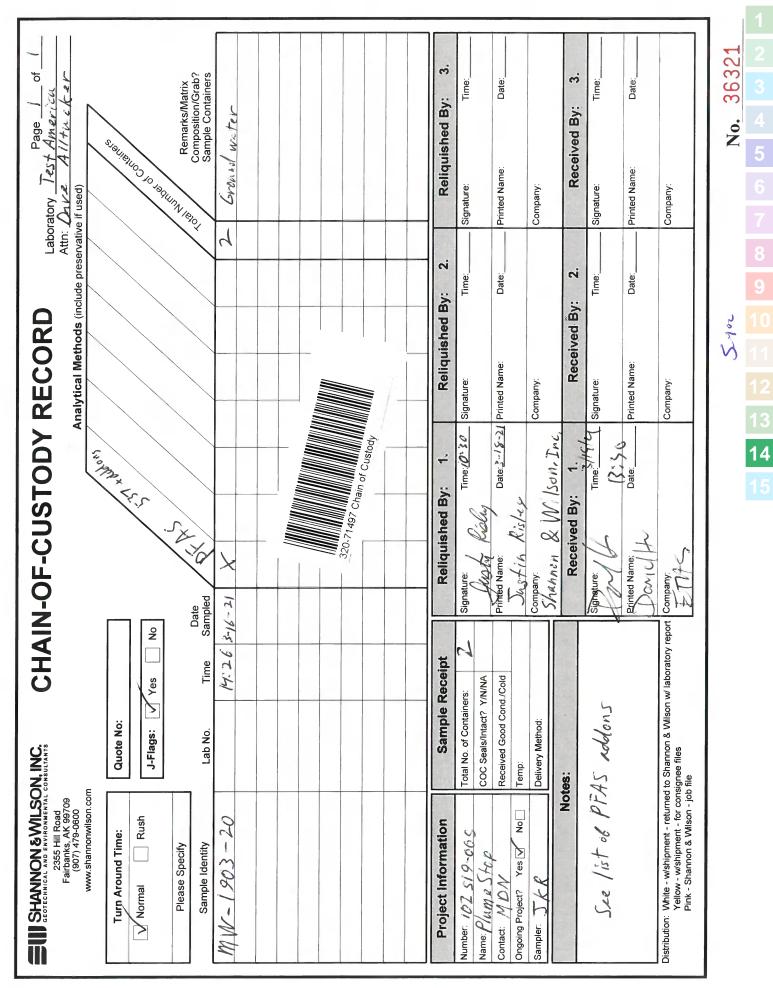
Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600


3/31/2021 (Rev. 1)

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: Plume Stop

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-71497-1	MW-1903-20	Water	03/16/21 14:26	03/19/21 13:30	

3/31/2021 (Rev. 1)

PFAS Analyte List for MW-1903-20

PFC_IDA	PFAS, Method 537 List + addons	MDL	RL	
	11CI-PF3OUdS	0.32	2	ng/L
	4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	0.4	2	ng/L
	6:2 FTS	2.5	5	ng/L
	8:2 FTS	0.46	2	ng/L
	9CI-PF3ONS	0.24	2	ng/L
	HFPO-DA (GenX)	1.5	4	ng/L
	N-ethylperfluorooctanesulfonamidoacetic ac (NEtFOSAA)	1.3	5	ng/L
	N-methylperfluorooctanesulfonamidoacetic ac (NMeFOSAA)	1.2	5	ng/L
	Perfluorobutanesulfonic acid (PFBS)	0.2	2	ng/L
	Perfluorobutanoic acid (PFBA)	2.4	5	ng/L
	Perfluorodecanesulfonic acid (PFDS)	0.32	2	ng/L
	Perfluorodecanoic acid (PFDA)	0.31	2	ng/L
	Perfluorododecanoic acid (PFDoA)	0.55	2	ng/L
	Perfluoroheptanesulfonic Acid (PFHpS)	0.19	2	ng/L
	Perfluoroheptanoic acid (PFHpA)	0.25	2	ng/L
	Perfluorohexanesulfonic acid (PFHxS)	0.57	2	ng/L
	Perfluorohexanoic acid (PFHxA)	0.58	2	ng/L
	Perfluorononanoic acid (PFNA)	0.27	2	ng/L
	Perfluorooctanesulfonamide (FOSA)	0.98	2	ng/L
	Perfluorooctanesulfonic acid (PFOS)	0.54	2	ng/L
	Perfluorooctanoic acid (PFOA)	0.85	2	ng/L
	Perfluoropentanoic acid (PFPeA)	0.49	2	ng/L
	Perfluorotetradecanoic acid (PFTeA)	0.73	2	ng/L
	Perfluorotridecanoic acid (PFTriA)	1.3	2	ng/L
	Perfluoroundecanoic acid (PFUnA)	1.1	2	ng/L

027	FAI 624	87	526								02	27-6248 7526
	s Name and Addres		Inc	Shipper's A 2740(ccount N	umber 33		Negotiable				
2355	Hill Rd			Customer 1('s ID Nur 926	nber		r Wayl ^{ed By}	DIII	Alas	ka.	
	anks, AK 99	712								AIRC		
USA			Tel: 907-4	179-0600	`			P.O. BOX 68900 SEATTLE, WA 98168 800-22 9 -275 27 ALASKACARGO.COM				
Consigne	ee's Name and Add	ress	161. 907-4	Consignee's		Number	Also	notify				
	D ALLTUCK							(A		TAS
			ORATORIE O, CA 9560		VER					TA	3-19-	20
USA	I GAUNAIM		0, CA 9000	0						0) =	3:30
Tel: 916 373 5600							Т	el:				
Issuing Carrier's Agent and City					ounting Info				10926			
								annon a 55 Hill R	nd Wilsc d	on inc		
									AK 9971	12		
Agent's I/	ATA Code			Account No.			US	A				
Airport of	Departure (Addr. o	f Firet (Carrier) and Request	ed Routing			- SF	N/4115	92			
Fairba		. i irst t	sumory and isequest	sa nouting			Go	oldStreal	K			
То	By First Carrier			To / By		о / Ву	1	ency	WT/VAL		clared Value For Carriage	Declared Value For Customs
	Alaska Airl	ines	Flight/Date	SMF	AS Flight/D	ate		DPX			NVD	NCV
	RAMENTO			234/19	- V	8 883/19		XXX				
Handling	Information									*		
			LER WHEN P ARGO (NON		-							
	I ENIORADE			-1000)								SCI
No of	Gross	kg Ib	Commodity	Charge		Rate			Total			Quantity of Goods
Pieces	Weight	di	Item No.			Char					(mci. Dimen	sions or Volume)
1	12.0			12	2.0					67.00	CHILL WATER	R SAMPLES
	- - -										D: 15 × 10 × 1	1.4 1
											Dims: 15 x 10 x ²	14 X I
		$\left \right $	-								GSX COL PER	
1	12.0									67.00	Volume: 1.215	
Prepaid	07.0	-	nt Charge	Collect		Charges				.		
	67.00		on Charge		XB	C 10	.00					
			Tax	-	1							
	2.10 Total Of		harges Due Agent		Shippy	r certifies the	t the nort	culars on t	he face her	eof are correct	and that insofar as any part	of the consignment
			J		contai	ns dangerou	s goods	such par	is properl	y described by	na that insofar as any part name and is in proper con ons. I consent to the inspe	dition for carriage
			arges Due Carrier		1	Shann			-	3	Sianature of Shipper or his	
	10.00)			Inc					C	Jost Prela	2
					S.A.	THIS SHIP		DES NOT (CONTAIN		THIS SHIPMENT <u>DOES</u> CO DANGEROUS GOODS	NTAIN
	Total Prepaid		Total Co	llect				-				
	79.10)			181	Mar 202	1 11	·26	F	airbanks	Alac	ka Airlines
						uted On (Date				all Dariks		g Carrier or its Agent
												7-6248 7526
					L	Page	22 of	23				3/31/2021 (Rev. 1

Client: Shannon & Wilson, Inc

Login Number: 71497 List Number: 1 Creator: Oropeza, Salvador

Question	Anower	Commont
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1029922/1029923
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	GEL PACKS ONLY
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins TestAmerica, Sacramento

Laboratory Data Review Checklist

Completed By:

Justin Risley

Title:

Environmental Scientist

Date:

3/31/2021

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)

Laboratory Report Number:

320-71497-1 Revision 1

Laboratory Report Date:

3/31/2021

CS Site Name:

DOT&PF Fairbanks International PFAS PlumeStop Monitoring

ADEC File Number:

100.38.277

Hazard Identification Number:

26816

320-71497-1 Revision 1

Laboratory Report Date:

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

Yes \boxtimes No \square N/A \square Comments:

The DEC certified TestAmerica of West Sacramento, CA for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018 by method 537. These compounds were included in the DEC's Contaminated Sites Laboratory Approval 17-020.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

The requested analyses were conducted by TestAmerica of West Sacramento, CA.

2. Chain of Custody (CoC)

a. CoC information completed, signed, and dated (including released/received by)?

Yes \boxtimes No \square N/A \square	Comments:
--	-----------

b. Correct analyses requested?

Yes⊠	No□	N/A	Comments
			Commentes

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes \boxtimes No \square N/A \square Comments:

The temperature of the cooler at receipt was 5.4° C.

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \square No \square N/A \boxtimes Comments:

Samples do not require preservation other than temperature.

c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

The sample receipt form notes that the samples were received in good condition.

320-71497-1 Revision 1

Laboratory Report Date:

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \square No \square N/A \boxtimes Comments:

The sample receipt form notes no discrepancies.

e. Data quality or usability affected?

Comments:

Data quality and/or usability were not affected.

4. <u>Case Narrative</u>

a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

The case narrative indicates the following:

The matrix spike recovery for preparation batch 320-473069 and analytical batch 320-474121 was outside control limits for Perfluorooctanesulfonamide (FOSA). Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for 13C2 PFTeDA in the following continuing calibration verification (CCV): (CCV 320-474121/13). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

The following sample contains black sediments at the bottom of the bottle prior to extraction: *MW*-1903-20

During the solid phase extraction process, the following samples contain non-settable particulates which clogged the solid phase extraction column: *MW-1903-20*.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

No corrective actions necessary.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The results are unaffected; see the following sections for additional information.

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \boxtimes No \square N/A \square Comments:

The reporting limit (RL) is less than the applicable DEC regulatory limit for the project.

e. Data quality or usability affected?

The data quality and/or usability were not affected; see above.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

```
Yes \boxtimes No \square N/A \square Comments:
```

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
 Yes⊠ No□ N/A□ Comments:

There were no detections in the method blank sample associated with this project sample.

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

N/A; see above.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

v. Data quality or usability affected?

Comments:

No; see above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

An LCS was reported for the project sample.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

Metals and/or inorganics were not analyzed as part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \boxtimes Comments:

No LCSD.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

N/A; see above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability were not affected; see above.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes \square No \boxtimes N/A \square Comments:

MS and MSD samples were reported for PFAS analysis.

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

Metals and/or inorganics were not analyzed as part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes \square No \square N/A \boxtimes Comments:

MS and MSD samples were within limits with the exception of the MS %R for FOSA which was recovered above the upper laboratory limit.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes \boxtimes No \square N/A \square Comments:

RPDs were within limits.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

None. The original sample used to conduct the matrix spike analysis is not a project sample.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability were not affected; see above.

d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only

i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

There were no IDA recovery failures associated with this work order. We note an IDA failure is described in the case narrative for a CCV sample. Since the IDAs were within limits for the associated project sample, the results are unaffected by the CCV failure.

iv. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \square No \square N/A \boxtimes Comments:

PFAS are not volatile compounds. A trip blank is not required for the requested analysis.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \square No \square N/A \boxtimes Comments:

A trip blank is not required for the requested analysis.

iii. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

A trip blank is not required for the requested analysis.

320-71497-1 Revision 1

Laboratory Report Date:

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

NA; a trip blank is not required for the requested analysis.

v. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \square No \square N/A \boxtimes Comments:

Only one project sample was submitted.

ii. Submitted blind to lab?

Yes \square No \square N/A \boxtimes Comments:

Only one project sample was submitted.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:

$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

Yes \square No \square N/A \boxtimes Comments:

N/A; only one sample was submitted.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

N/A; see above.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

Reusable equipment was not used for sample collection. Therefore, decontamination or equipment blank samples were not required. A peri-pump was used to collect the requested analytes.

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

See above.

320-71497-1 Revision 1

Laboratory Report Date:

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

N/A; see above.

iii. Data quality or usability affected?

Comments:

No; see above.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?

Yes \square No \square N/A \boxtimes Comments:

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks 2355 Hill Rd Fairbanks, AK 99707 (907)479-0600

Report Number: 1213480

Client Project: 102519-005 Plume Stop MW

Dear Marcy Nadel,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins Project Manager Jennifer.Dawkins@sgs.com Date

Print Date: 07/09/2021 9:02:07AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks SGS Project: 1213480 Project Name/Site: 102519-005 Plume Stop MW Project Contact: Marcy Nadel

Refer to sample receipt form for information on sample condition.

1213526001(1618408MS) (1618409) MS

200.8- Metals MS recovery calcium does not meet the QC criteria. The concentration of the PS is four times greater than the spike level.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 07/09/2021 9:02:09AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry (Provisionally Certified as of 05/27/2021 for Mercury by EPA200.8, Nitrate as N by SM 4500NO3-F and VOCs by EPA 524.2) & Microbiology & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content. • integrated per SOP.

Print Date: 07/09/2021 9:02:11AM

Note:

Sample Summary							
<u>Client Sample ID</u>	<u>Lab Sample ID</u>	<u>Collected</u>	<u>Received</u>	<u>Matrix</u>			
MW-1903-20	1213480001	06/17/2021	06/19/2021	Water (Surface, Eff., Ground)			
Trip Blanks	1213480002	06/17/2021	06/19/2021	Water (Surface, Eff., Ground)			
Method	Method Description						
SW8021B	BTEX 8021						
SM 5310B	Dissolved Organic Carbon						
AK102	DRO/RRO Low Volume Water						
AK103	DRO/RRO Low Volume Water						
AK101	Gasoline Range Organics (W)						
EP200.8	Metals in Water by 200.8 ICP-MS						
SM 5310B	SM 5310B Total Organic Carbon						

Print Date: 07/09/2021 9:02:12AM

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: MW-1903-20 Lab Sample ID: 1213480001	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Calcium	109000	ug/L
	Magnesium	25600	ug/L
Waters Department	TOC Average, Dissolved	3140	ug/L
	Total Organic Carbon Average	6270	ug/L
Client Sample ID: Trip Blanks			
Lab Sample ID: 1213480002	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Volatile Fuels	Gasoline Range Organics	0.0387J	mg/L

Print Date: 07/09/2021 9:02:14AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-1903-20							
Client Sample ID: MW-1903-20 Client Project ID: 102519-005 Plume Lab Sample ID: 1213480001 Lab Project ID: 1213480	R M S	eceived Da	ate: 06/17/ ate: 06/19/2 er (Surface,	21 13:11			
Parameter Calcium	<u>Result Qual</u> 109000	<u>LOQ/CL</u> 2500	<u>DL</u> 750	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 06/26/21 17:02
Magnesium	25600	250	75.0	ug/L	1		06/26/21 17:02
Batch Information Analytical Batch: MMS11163 Analytical Method: EP200.8 Analyst: DSD Analytical Date/Time: 06/26/21 17:02 Container ID: 1213480001-F		I	Prep Methoo Prep Date/T Prep Initial V	MXX34326 d: E200.2 ime: 06/24/2 Vt./Vol.: 4 m t Vol: 50 mL	L		

Print Date: 07/09/2021 9:02:15AM

J flagging is activated

Member of SGS Group

ent Project ID: 102519-005 Plume Stop MW b Sample ID: 1213480001 b Project ID: 12134800 solids (%): Location: Isults by Semivolatile Organic Fuels Imits Defended State: 06/19/21 13:11 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Isults by Semivolatile Organic Fuels Imits Defended State: 06/19/21 13:11 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Isults by Semivolatile Organic Fuels Imits Date Analyze Seel Range Organics 0.288 U 0.577 0.173 mg/L 1 06/29/21 15: rogates Androstane (surr) 83 50-150 % 1 06/29/21 15: Itch Information Analytical Batch: XFC15977 Analytical Date/Time: 06/29/21 15:55 Container ID: 1213480001-A Prep Date/Time: 06/29/21 15:55 Container ID: 1213480001-A Prep Date/Time: 06/29/21 15:55 Prep Initial WL/Vol: 260 mL Prep Extract Vol: 1 mL Imits Date Analyze Imits Date Imits Date Imits Imits Date Imits Date Imits Imits Date Imits Date Imits Date Imits Imits Date Imits Date	Results of MW-1903-20								
rameter Result Qual LOQ/CL DL Units DE Limits Date Analyze ssel Range Organics 0.288 U 0.577 0.173 mg/L 1 06/29/21 15: rogates Androstane (surr) 83 50-150 % 1 06/29/21 15: reg Batch: XXX45064 Analytical Batch: XFC15977 Prep Batch: XXX45064 Analytical Date/Time: 06/29/21 15:55 Prep Date/Time: 06/28/21 16:33 Prep Date/Time: 06/28/21 16:33 Analytical Date/Time: 06/29/21 15:55 Prep Date/Time: 06/28/21 16:33 Prep Extract Vol: 1 mL Allowable Allowable Limits DE Limits DE Analytical Date/Time: 06/28/21 15:55 Prep Date/Time: 06/28/21 16:33 Prep Date/Time: 06/28/21 16:33 Container ID: 1213480001-A Prep Extract Vol: 1 mL Prep Stormal Mathematical Mathematical Batch: XK01 Prep Batch: XXX45064 Prep Method: XX3520C Prep Method: SW3520C Analytical Batch: XFC15977 Prep Method: SW3520C Analytical Batch: XK103 Prep Method: SW3520C Analytical Ba	_ab Sample ID: 1213480001 _ab Project ID: 1213480		Received Date: 06/19/21 13:11 Matrix: Water (Surface, Eff., Ground) Solids (%):						
rameterResult QualLOQ/CLDLUnitsDFLimitsDate Analyzeseel Range Organics0.288 U0.5770.173mg/L106/29/21 15:rogatesAndrostane (surr)8350-150%106/29/21 15:ttch InformationAnalytical Batch: XFC15977 Analytical Date/Time: 06/29/21 15:55Analytical Date/Time: 06/29/21 15:55Prep Batch: XXX45064 Prep Initial Wt./Vol: 260 mL Prep Extract Vol: 1 mLAllowable Limitstage end to be end	Results by Semivolatile Organic Fuels	•					Allowable		
rogates Androstane (surr) 83 50-150 % 1 06/29/21 15: tch Information Analytical Batch: XFC15977 Analytical Method: AK102 Analytical Date/Time: 06/29/21 15:55 Container ID: 1213480001-A Prep Method: SW3520C Analytical Date/Time: 06/29/21 15:55 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL Prep Batch: XXX45064 DL Units DE Limits Date Analyzes 0.240 U 0.481 0.144 mg/L 1 06/29/21 15: Prep Batch: XXX45064 06/29/21 15: Prep Batch: XXX45064 Analytical Batch: XFC15977 Analytical Batch: XFC15977 Analytical Batch: XFC15977 Analytical Date/Time: 06/29/21 15:55 Prep Date/Time: 06/28/21 16:33 Analytical Date/Time: 06/29/21 15:55 Prep Date/Time: 06/28/21 16:33 Analytical Date/Time: 06/29/21 15:55 Prep Initial Wt./Vol.: 260 mL	Parameter Dissel Pango Organico							Date Analyze	
Androstane (surr) 83 50-150 % 1 06/29/21 15: tch Information Analytical Batch: XFC15977 Analytical Method: AK102 Analytical Date/Time: 06/29/21 15:55 Container ID: 1213480001-A Prep Date/Time: 06/28/21 16:33 Prep Initial WL/Vol.: 260 mL Prep Extract Vol: 1 mL Prep Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL Prep Extr		0.200 0	0.577	0.173	mg/L	I		00/29/21 15.5	
Itch Information Analytical Batch: XFC15977 Analytical Method: AK102 Analytical Date/Time: 06/29/21 15:55 Container ID: 1213480001-A Prep Date/Time: 06/29/21 15:55 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL rameter Result Qual sidual Range Organics 0.240 U 0.240 U 0.481 0.144 mg/L 06/29/21 15: rogates Triacontane-d62 (surr) 95.7 50-150 % 1 06/29/21 15: Analytical Batch: XFC15977 Analytical Batch: XFC15977 Analytical Batch: XFC15977 Analytical Date/Time: 06/28/21 15:55 Prep Date/Time: 06/28/21 16:33 Prep Method: SW3520C Analytical Date/Time: 06/29/21 15:55	-	83	50-150		%	1		06/29/21 15:5	
Analytical Batch: XFC15977 Analytical Method: AK102 Analytical Date/Time: 06/29/21 15:55 Container ID: 1213480001-A Prep Date/Time: 06/29/21 15:55 Container ID: 1213480001-A Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL Analytical Batch: XFC15977 Analytical Batch: XFC15977 Analytical Batch: XFC15977 Analytical Batch: XFC15977 Analytical Method: AK103 Analytical Batch: XFC15977 Analytical Batch: XFC15977 Analytical Batch: XFC15977 Analytical Method: AK103 Analytical Date/Time: 06/29/21 15:55 Prep Initial Wt./Vol.: 260 mL					,,,	·		00/20/21 10:0	
Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 06/29/21 15:55 Container ID: 1213480001-A Prep Method: SW3520C Prep Date/Time: 06/28/21 16:33 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL <u>Allowable</u> Limits Date Analyze Sidual Range Organics 0.240 U 0.481 0.144 mg/L 1 06/29/21 15: Triacontane-d62 (surr) 95.7 50-150 % 1 06/29/21 15: Prep Batch: XXX45064 Analytical Batch: XFC15977 Analytical Method: AK103 Analytical Method: AK103 Analytical Method: AK103 Analytical Date/Time: 06/29/21 15:55 Prep Initial Wt./Vol.: 260 mL	Batch Information								
rameterResult QualLOQ/CLDLUnitsDFLimitsDate Analyzesidual Range Organics0.240 U0.4810.144mg/L106/29/21 15:rogatesTriacontane-d62 (surr)95.750-150%106/29/21 15:tch InformationAnalytical Batch: XFC15977Prep Batch: XXX45064Analytical Method: AK103Prep Method: SW3520CAnalyst: IVMPrep Date/Time:06/28/21 16:33Analytical Date/Time:06/29/21 15:55Prep Initial Wt./Vol.:260 mL	Analytical Batch: XFC15977 Analytical Method: AK102 Analyst: IVM Analytical Date/Time: 06/29/21 15:55 Container ID: 1213480001-A		F F	Prep Method Prep Date/Til Prep Initial W	: SW3520C me: 06/28/2 /t./Vol.: 260	1 16:33			
Triacontane-d62 (surr) 95.7 50-150 % 1 06/29/21 15: ttch Information Analytical Batch: XFC15977 Prep Batch: XXX45064 Prep Method: SW3520C Analytical Method: AK103 Prep Date/Time: 06/28/21 16:33 Prep Date/Time: 06/28/21 16:33 Analytical Date/Time: 06/29/21 15:55 Prep Initial Wt./Vol.: 260 mL	<u>Parameter</u> Residual Range Organics							<u>Date Analyze</u> 06/29/21 15:5	
Analytical Batch: XFC15977Prep Batch: XXX45064Analytical Method: AK103Prep Method: SW3520CAnalyst: IVMPrep Date/Time: 06/28/21 16:33Analytical Date/Time: 06/29/21 15:55Prep Initial Wt./Vol.: 260 mL	u rrogates n-Triacontane-d62 (surr)	95.7	50-150		%	1		06/29/21 15:5	
Analytical Method: AK103Prep Method: SW3520CAnalyst: IVMPrep Date/Time: 06/28/21 16:33Analytical Date/Time: 06/29/21 15:55Prep Initial Wt./Vol.: 260 mL	Batch Information								
	Analytical Batch: XFC15977 Analytical Method: AK103 Analyst: IVM Analytical Date/Time: 06/29/21 15:55 Container ID: 1213480001-A		F	Prep Method Prep Date/Tii Prep Initial W	: SW3520C me: 06/28/2 /t./Vol.: 260	1 16:33			
	Analytical Date/Time: 06/29/21 15:55		F	Prep Initial W	/t./Vol.: 260				

Results of MW-1903-20								
Client Sample ID: MW-1903-20 Client Project ID: 102519-005 Plume Lab Sample ID: 1213480001 Lab Project ID: 1213480	Stop MW	Collection Date: 06/17/21 14:00 Received Date: 06/19/21 13:11 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels			_					
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed	
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		06/24/21 22:3	
Surrogates								
4-Bromofluorobenzene (surr)	67.9	50-150		%	1		06/24/21 22:3	
Batch Information								
Analytical Batch: VFC15674 Analytical Method: AK101 Analyst: IJV Analytical Date/Time: 06/24/21 22:31 Container ID: 1213480001-G			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 06/24/2 ′t./Vol.: 5 m	21 06:00			
_						Allowable		
Parameter	<u>Result Qual</u> 0.250 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u>	<u>DF</u> 1	<u>Limits</u>	Date Analyze 06/24/21 22:3	
Benzene Ethylbenzene	0.250 U 0.500 U	0.500 1.00	0.150	ug/L ug/L	1		06/24/21 22:3	
o-Xylene	0.500 U	1.00	0.310	ug/L	1		06/24/21 22:3	
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		06/24/21 22:3	
Toluene	0.500 U	1.00	0.310	ug/L	1		06/24/21 22:3	
Xylenes (total)	1.50 U	3.00	0.930	ug/L	1		06/24/21 22:3	
Surrogates								
1,4-Difluorobenzene (surr)	83.6	77-115		%	1		06/24/21 22:3	
Batch Information								
Analytical Batch: VFC15674 Analytical Method: SW8021B Analyst: IJV Analytical Date/Time: 06/24/21 22:31 Container ID: 1213480001-G			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 06/24/2 ′t./Vol.: 5 m	21 06:00			

SGS North America Inc.

000

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-1903-20 Client Sample ID: MW-1903-20 Client Project ID: 102519-005 Plume Lab Sample ID: 1213480001 Lab Project ID: 1213480	Stop MW	R M S	eceived Da	ate: 06/17/ ate: 06/19/2 er (Surface,	21 13:11		
Results by Waters Department Parameter FOC Average, Dissolved Fotal Organic Carbon Average	<u>Result Qual</u> 3140 6270	<u>LOQ/CL</u> 1000 1000	<u>DL</u> 400 400	<u>Units</u> ug/L ug/L	<u>DF</u> 1 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 06/23/21 22:09 06/23/21 17:57
Batch Information Analytical Batch: WTC3101 Analytical Method: SM 5310B Analyst: EWW Analytical Date/Time: 06/23/21 17:57 Container ID: 1213480001-C							
Analytical Batch: WTC3101 Analytical Method: SM 5310B Analyst: EWW Analytical Date/Time: 06/23/21 22:05 Container ID: 1213480001-D							

Print Date: 07/09/2021 9:02:15AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of Trip Blanks Client Sample ID: Trip Blanks		-	Collection Da				
Client Project ID: 102519-005 Plume Lab Sample ID: 1213480002	Stop MW		leceived Dat Iatrix: Water			und)	
Lab Project ID: 1213480			olids (%):	(,	,		
		L	ocation:				
Results by Volatile Fuels			_				
Deveneder	Describ Oursl			Linita	DE	Allowable	Data Analyza
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0387 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed
	0.0387 J	0.100	0.0310	mg/∟	I		00/25/21 10.5
surrogates		/					
4-Bromofluorobenzene (surr)	96	50-150		%	1		06/25/21 10:3
Batch Information							
Analytical Batch: VFC15672 Analytical Method: AK101 Analyst: IJV Analytical Date/Time: 06/25/21 10:30 Container ID: 1213480002-A			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	SW5030B ne: 06/24/2 t./Vol.: 5 m	21 06:00		
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		06/25/21 10:3
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		06/25/21 10:3
o-Xylene	0.500 U	1.00	0.310	ug/L	1		06/25/21 10:3
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		06/25/21 10:3
Toluene	0.500 U	1.00	0.310	ug/L	1		06/25/21 10:3
Xylenes (total)	1.50 U	3.00	0.930	ug/L	1		06/25/21 10:3
urrogates							
1,4-Difluorobenzene (surr)	99.9	77-115		%	1		06/25/21 10:3
Batch Information							
Analytical Batch: VFC15672 Analytical Method: SW8021B Analyst: IJV Analytical Date/Time: 06/25/21 10:30 Container ID: 1213480002-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	SW5030B me: 06/24/2 t./Vol.: 5 m	1 06:00		

SGS

Blank Lab ID: 1618293 QC for Samples: I213480001	,			
Results by EP200.8				
Parameter	Results	LOQ/CL	DL	Units
Calcium Magnesium	250U 25.0U	500 50.0	150 15.0	ug/L ug/L
Analytical Batch: MM Analytical Method: El Instrument: Perkin El Analyst: DSD Analytical Date/Time:	P200.8	Prep Me Prep Da Prep Ini	tch: MXX34326 ethod: E200.2 te/Time: 6/24/2 tial Wt./Vol.: 20 tract Vol: 50 ml	021 12:50:23PM mL

Print Date: 07/09/2021 9:02:17AM

Blank Spike Summary			
Blank Spike ID: LCS for H Blank Spike Lab ID: 1618 Date Analyzed: 06/26/20	3294	34326]	Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1213	480001		
Results by EP200.8			
	Blank	Spike (ug/L)	
<u>Parameter</u>	<u>Spike</u> <u>Res</u>	ult <u>Rec (%)</u>	<u>CL</u>
Calcium	10000 114	00 114	(85-115)
Magnesium	10000 115	00 115	(85-115)
Batch Information			
Analytical Batch: MMS11 ⁺ Analytical Method: EP200 Instrument: Perkin Elmer Analyst: DSD	.8		Prep Batch: MXX34326 Prep Method: E200.2 Prep Date/Time: 06/24/2021 12:50 Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 07/09/2021 9:02:20AM

Matrix Spike Summary			<u> </u>							
Original Sample ID: 1618408 MS Sample ID: 1618409 MS MSD Sample ID: QC for Samples: 1213480001				Analysis Date: 06/26/2021 16:44 Analysis Date: 06/26/2021 16:47 Analysis Date: Matrix: Water (Surface, Eff., Ground)						
Results by EP200.8		Ма	trix Spike (i	ua/L)	Snik	e Duplicat	e (ua/L)			
<u>Parameter</u> Calcium Magnesium	<u>Sample</u> 118000 23400	<u>Spike</u> 10000 10000	<u>Result</u> 123000	<u>Rec (%)</u> 53 * 92	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u> 70-130 70-130	<u>RPD (%)</u>	<u>RPD CL</u>
Batch Information	1163)0.8 r Nexlon P5			Pre Pre	p Method: p Date/Tin	ne: 6/24/2 t./Vol.: 20	st for Metal 021 12:50: .00mL		IS	

Print Date: 07/09/2021 9:02:21AM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1821360 [VXX/37301] Blank Lab ID: 1618745

QC for Samples: 1213480002

Results by AK101

Parameter	Results	LOQ/CL	<u>DL</u>	Units
Benzene	0.000250U	0.000500	0.000150	mg/L
Ethylbenzene	0.000500U	0.00100	0.000310	mg/L
Gasoline Range Organics	0.0500U	0.100	0.0310	mg/L
o-Xylene	0.000500U	0.00100	0.000310	mg/L
P & M -Xylene	0.00100U	0.00200	0.000620	mg/L
Toluene	0.000500U	0.00100	0.000310	mg/L
Xylenes (total)	0.00150U	0.00300	0.000930	mg/L
Surrogates				
1,4-Difluorobenzene (surr)	99.9	77-115		%
4-Bromofluorobenzene (surr)	99.1	50-150		%

Batch Information

Analytical Batch: VFC15672 Analytical Method: AK101 Instrument: Agilent 7890A PID/FID Analyst: IJV Analytical Date/Time: 6/24/2021 1:58:00PM Prep Batch: VXX37301 Prep Method: SW5030B Prep Date/Time: 6/24/2021 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 07/09/2021 9:02:23AM

Blank Spike ID: LCS for HBN 1213480 [VXX37301] Blank Spike Lab ID: 1618746 Date Analyzed: 06/24/2021 14:35 Spike Duplicate ID: LCSD for HBN 1213480 [VXX37301] Spike Duplicate Lab ID: 1618747 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213480002

Results by AK101

	Blank Spike	e (mg/L)	S	pike Duplic	cate (mg/L)			
<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
0.100	0.104	104	0.100	0.102	102	(80-120)	1.60	(< 20)
0.100	0.100	100	0.100	0.0941	94	(75-125)	6.50	(< 20)
0.100	0.103	103	0.100	0.0961	96	(80-120)	7.30	(< 20)
0.200	0.203	101	0.200	0.189	95	(75-130)	7.00	(< 20)
0.100	0.0996	100	0.100	0.0963	96	(75-120)	3.40	(< 20)
0.300	0.306	102	0.300	0.285	95	(79-121)	7.10	(< 20)
0.0500		104	0.0500		106	(77-115)	1.70	
672 Prep Batch: VXX37301 1 Prep Method: SW5030B								
						1 06.00		
טודוט							Vol: 5 mL	
	<u>Spike</u> 0.100 0.100 0.100 0.200 0.100 0.300	Spike Result 0.100 0.104 0.100 0.100 0.100 0.103 0.200 0.203 0.100 0.0996 0.300 0.306	0.100 0.104 104 0.100 0.100 100 0.100 0.103 103 0.200 0.203 101 0.100 0.0996 100 0.300 0.306 102 0.0500 104	Spike Result Rec (%) Spike 0.100 0.104 104 0.100 0.100 0.100 100 0.100 0.100 0.100 100 0.100 0.100 0.103 103 0.100 0.200 0.203 101 0.200 0.100 0.0996 100 0.100 0.300 0.306 102 0.300 0.0500 104 0.0500 Prep Prep Prep Prep Prep Prep Prep Prep Prep	Spike Result Rec (%) Spike Result 0.100 0.104 104 0.100 0.102 0.100 0.100 100 0.100 0.0941 0.100 0.103 103 0.100 0.0961 0.200 0.203 101 0.200 0.189 0.100 0.0996 100 0.100 0.0963 0.300 0.306 102 0.300 0.285 0.0500 104 0.0500 Prep Batch: VI Prep Method: Prep Date/Time	Spike Result Rec (%) Spike Result Rec (%) 0.100 0.104 104 0.100 0.102 102 0.100 0.100 100 0.100 0.0941 94 0.100 0.103 103 0.100 0.0961 96 0.200 0.203 101 0.200 0.189 95 0.100 0.0996 100 0.100 0.0963 96 0.300 0.306 102 0.300 0.285 95 0.0500 104 0.0500 106	Spike Result Rec (%) Spike Result Rec (%) CL 0.100 0.104 104 0.100 0.102 102 (80-120) 0.100 0.100 100 0.100 0.0941 94 (75-125) 0.100 0.103 103 0.100 0.0961 96 (80-120) 0.200 0.203 101 0.200 0.189 95 (75-130) 0.100 0.0996 100 0.100 0.0963 96 (75-120) 0.300 0.306 102 0.300 0.285 95 (79-121) 0.0500 104 0.0500 106 (77-115)	Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) 0.100 0.104 104 0.100 0.102 102 (80-120) 1.60 0.100 0.100 100 0.100 0.0941 94 (75-125) 6.50 0.100 0.103 103 0.100 0.0961 96 (80-120) 7.30 0.200 0.203 101 0.200 0.189 95 (75-130) 7.00 0.100 0.0996 100 0.100 0.0963 96 (75-120) 3.40 0.300 0.306 102 0.300 0.285 95 (79-121) 7.10 0.0500 104 0.0500 106 (77-115) 1.70

Spike Init Wt./Vol.: 0.100 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 0.100 mg/L Extract Vol: 5 mL

Print Date: 07/09/2021 9:02:25AM

Blank Spike ID: LCS for HBN 1213480 [VXX37301] Blank Spike Lab ID: 1618748 Date Analyzed: 06/24/2021 14:53 Spike Duplicate ID: LCSD for HBN 1213480 [VXX37301] Spike Duplicate Lab ID: 1618749 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213480002

Results by AK101									
		Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.05	105	1.00	0.993	99	(60-120)	5.80	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500		119	0.0500		113	(50-150)	5.50	
Batch Information									
Analytical Batch: VFC15672				Pre	Batch: V	XX37301			
Analytical Method: AK101				Pre	Method:	SW5030B			
Instrument: Agilent 7890A Pl	Big OA PID/FID Prep Date/Time: 06/24/2021 06:00								
Analyst: IJV Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5									
				Dup	e Init Wt./\	/ol.: 1.00 mg	J/L Extract V	ol: 5 mL	

Print Date: 07/09/2021 9:02:25AM

Method Blank

Blank ID: MB for HBN 1821360 [VXX/37301] Blank Lab ID: 1618745

QC for Samples: 1213480002

Results by SW8021B

		1		
<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	0.930	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	99.9	77-115		%

Batch Information

Analytical Batch: VFC15672 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: IJV Analytical Date/Time: 6/24/2021 1:58:00PM Prep Batch: VXX37301 Prep Method: SW5030B Prep Date/Time: 6/24/2021 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 07/09/2021 9:02:27AM

Blank Spike ID: LCS for HBN 1213480 [VXX37301] Blank Spike Lab ID: 1618746 Date Analyzed: 06/24/2021 14:35 Spike Duplicate ID: LCSD for HBN 1213480 [VXX37301] Spike Duplicate Lab ID: 1618747 Matrix: Water (Surface, Eff., Ground)

Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

QC for Samples: 1213480002

Results by SW8021B

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	100	104	104	100	102	102	(80-120)	1.60	(< 20)
Ethylbenzene	100	100	100	100	94.1	94	(75-125)	6.50	(< 20)
o-Xylene	100	103	103	100	96.1	96	(80-120)	7.30	(< 20)
P & M -Xylene	200	203	101	200	189	95	(75-130)	7.00	(< 20)
Toluene	100	99.6	100	100	96.3	96	(75-120)	3.40	(< 20)
Xylenes (total)	300	306	102	300	285	95	(79-121)	7.10	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50		104	50		106	(77-115)	1.70	
Batch Information Analytical Batch: VFC15672 Analytical Method: SW8021B Prep Method: SW5030B									
Instrument: Agilent 7890A Pl Analyst: IJV									

Print Date: 07/09/2021 9:02:30AM

Method Blank

Blank ID: MB for HBN 1821364 [VXX/37303] Blank Lab ID: 1618768

QC for Samples: 1213480001

Results by AK101

Parameter	Results	LOQ/CL	DL	Units
Benzene	0.000250U	0.000500	0.000150	mg/L
Ethylbenzene	0.000500U	0.00100	0.000310	mg/L
Gasoline Range Organics	0.0500U	0.100	0.0310	mg/L
o-Xylene	0.000500U	0.00100	0.000310	mg/L
P & M -Xylene	0.00100U	0.00200	0.000620	mg/L
Toluene	0.000500U	0.00100	0.000310	mg/L
Xylenes (total)	0.00150U	0.00300	0.000930	mg/L
Surrogates				
1,4-Difluorobenzene (surr)	84.9	77-115		%
4-Bromofluorobenzene (surr)	76	50-150		%

Batch Information

Analytical Batch: VFC15674 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID Analyst: IJV Analytical Date/Time: 6/24/2021 11:07:00AM Prep Batch: VXX37303 Prep Method: SW5030B Prep Date/Time: 6/24/2021 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 07/09/2021 9:02:32AM

Blank Spike ID: LCS for HBN 1213480 [VXX37303] Blank Spike Lab ID: 1618769 Date Analyzed: 06/24/2021 11:43 Spike Duplicate ID: LCSD for HBN 1213480 [VXX37303] Spike Duplicate Lab ID: 1618770 Matrix: Water (Surface, Eff., Ground)

Dupe Init Wt./Vol.: 0.100 mg/L Extract Vol: 5 mL

QC for Samples: 1213480001

Results by AK101

,									
		Blank Spike	e (mg/L)	S	pike Duplic	cate (mg/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	0.100	0.110	110	0.100	0.109	109	(80-120)	1.50	(< 20)
Ethylbenzene	0.100	0.102	102	0.100	0.0980	98	(75-125)	3.50	(< 20)
o-Xylene	0.100	0.0948	95	0.100	0.0888	89	(80-120)	6.50	(< 20)
P & M -Xylene	0.200	0.190	95	0.200	0.184	92	(75-130)	3.50	(< 20)
Toluene	0.100	0.105	105	0.100	0.104	104	(75-120)	1.40	(< 20)
Xylenes (total)	0.300	0.285	95	0.300	0.273	91	(79-121)	4.50	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	0.0500		95	0.0500		111	(77-115)	15.40	
Batch Information Analytical Batch: VFC15674 Prep Batch: VXX37303 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID Prep Date/Time: 06/24/2021 06:00									
Analyst: IJV						/ol.: 0.100 m		Vol: 5 mL	

Print Date: 07/09/2021 9:02:34AM

Blank Spike ID: LCS for HBN 1213480 [VXX37303] Blank Spike Lab ID: 1618771 Date Analyzed: 06/24/2021 12:01 Spike Duplicate ID: LCSD for HBN 1213480 [VXX37303] Spike Duplicate Lab ID: 1618772 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213480001

Results by AK101			_							
		Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)				
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL	
Gasoline Range Organics	1.00	1.08	108	1.00	1.05	105	(60-120)	2.90	(< 20)	
Surrogates										
4-Bromofluorobenzene (surr)	0.0500		94	0.0500		91	(50-150)	3.90		
Batch Information										
Analytical Batch: VFC15674				Prep	Batch: V	XX37303				
Analytical Method: AK101				Prep	Method:	SW5030B				
Instrument: Agilent 7890 PID/	PID/FID Prep Date/Time: 06/24/2021 06:00									
					Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL					
				Dup	e Init Wt./\	/ol.: 1.00 mg	g/L Extract V	ol: 5 mL		

Print Date: 07/09/2021 9:02:34AM

Method Blank

Blank ID: MB for HBN 1821364 [VXX/37303] Blank Lab ID: 1618768

QC for Samples: 1213480001

Results by SW8021B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	0.930	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	84.9	77-115		%

Batch Information

Analytical Batch: VFC15674 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: IJV Analytical Date/Time: 6/24/2021 11:07:00AM Prep Batch: VXX37303 Prep Method: SW5030B Prep Date/Time: 6/24/2021 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 07/09/2021 9:02:37AM

Blank Spike ID: LCS for HBN 1213480 [VXX37303] Blank Spike Lab ID: 1618769 Date Analyzed: 06/24/2021 11:43 Spike Duplicate ID: LCSD for HBN 1213480 [VXX37303] Spike Duplicate Lab ID: 1618770 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213480001

Results by SW8021B

<u>oike</u> 0	ank Spike (<u>Result</u> 110	(ug/L) <u>Rec (%)</u> 110	<u>Spike</u>	pike Duplic Result	ate (ug/L) <u>Rec (%)</u>	CL			
0	110		<u>Spike</u>	Result	Rec (%)	CL			
		110			1.00 (70)	<u>CL</u>	<u>RPD (%)</u>	RPD CL	
0		110	100	109	109	(80-120)	1.50	(< 20)	
	102	102	100	98.0	98	(75-125)	3.50	(< 20)	
0	94.8	95	100	88.8	89	(80-120)	6.50	(< 20)	
0	190	95	200	184	92	(75-130)	3.50	(< 20)	
0	105	105	100	104	104	(75-120)	1.40	(< 20)	
0	285	95	300	273	91	(79-121)	4.50	(< 20)	
		95	50		111	(77-115)	15.40		
Analytical Batch: VFC15674				Prep Batch: VXX37303					
Analytical Method: SW8021B				Prep Method: SW5030B					
Instrument: Agilent 7890 PID/FID Analyst: IJV									
					0				
	0	0 105 0 285	0 105 105 0 285 95	0 105 105 100 0 285 95 300 95 50 Prep Prep Prep Spik	0 105 105 100 104 0 285 95 300 273 95 50 Prep Batch: V Prep Method: \$ Prep Date/Time Spike Init Wt./V	0 105 105 100 104 104 0 285 95 300 273 91 95 50 111 Prep Batch: VXX37303 Prep Method: SW5030B Prep Date/Time: 06/24/2021 Spike Init Wt./Vol.: 100 ug/L	0 105 105 100 104 104 (75-120) 0 285 95 300 273 91 (79-121) 95 50 111 (77-115) Prep Batch: VXX37303 Prep Method: SW5030B Prep Date/Time: 06/24/2021 06:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol	0 105 105 100 104 104 (75-120) 1.40 0 285 95 300 273 91 (79-121) 4.50 95 50 111 (77-115) 15.40 Prep Batch: VXX37303 Prep Method: SW5030B Prep Date/Time: 06/24/2021 06:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL	

Print Date: 07/09/2021 9:02:39AM

Method Blank				
Blank ID: MB for HBN 1821308 [WTC/3101] Blank Lab ID: 1618513	Matrix	x: Water (Surl	face, Eff., Ground)	
QC for Samples: 1213480001				
Results by SM 5310B				
ParameterResultsTotal Organic Carbon Average500U	<u>LOQ/CL</u> 1000	<u>DL</u> 400	<u>Units</u> ug/L	
Analytical Batch: WTC3101 Analytical Method: SM 5310B Instrument: TOC Analyzer 2 Analyst: EWW Analytical Date/Time: 6/23/2021 1:09:45PM				

Print Date: 07/09/2021 9:02:42AM

Method Blank	
Blank ID: MB for HBN 1821308 [WTC/3101] Blank Lab ID: 1618517	Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1213480001	
Results by SM 5310B	
ParameterResultsTotal Organic Carbon Average500U	LOQ/CL DL Units 1000 400 ug/L
Batch Information	
Analytical Batch: WTC3101 Analytical Method: SM 5310B Instrument: TOC Analyzer 2 Analyst: EWW Analytical Date/Time: 6/23/2021 7:49:00PM	

Print Date: 07/09/2021 9:02:42AM

SGS	

Blank Spike Summary			
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1618512 Date Analyzed: 06/23/2021		TC3101]	Matrixy Mater (Surface Eff. Cround)
QC for Samples: 12134800	001		Matrix: Water (Surface, Eff., Ground)
Results by SM 5310B			
		ink Spike (ug/L)	
<u>Parameter</u> Total Organic Carbon Average		<u>Result</u> <u>Rec (%)</u> 80000 107	<u>CL</u> (80-120)
	10000	107	(00-120)
Batch Information			
Analytical Batch: WTC3101 Analytical Method: SM 5310B Instrument: TOC Analyzer 2 Analyst: EWW			
Print Date: 07/09/2021 9:02:44AM			

SGS	

Blank Spike Summary			
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1618516 Date Analyzed: 06/23/2021	6)1]	Matrix: Water (Surface, Eff., Ground)
QC for Samples: 12134800	001		
Results by SM 5310B			
	Blank Spi		
<u>Parameter</u> Total Organic Carbon Average	<u>Spike</u> <u>Result</u> 75000 79500	<u>Rec (%)</u> 106	<u>CL</u> (80-120)
Batch Information			
Analytical Batch: WTC3101 Analytical Method: SM 5310B Instrument: TOC Analyzer 2 Analyst: EWW			
Print Date: 07/09/2021 9:02:44AM			

SGS

Matrix Spike Summary										
Original Sample ID: 1213265 MS Sample ID: 1618514 MS MSD Sample ID: 1618515 M	6				Analysis Analysis	Date: 00 Date: 00	6/23/2021 6/23/2021 6/23/2021 urface, Eff.	13:59 14:15)	
QC for Samples: 121348000	1									
Results by SM 5310B										
		Ma	trix Spike ((ug/L)	Spike	e Duplicat	e (ug/L)			
<u>Parameter</u> Total Organic Carbon Average	<u>Sample</u> 1230	<u>Spike</u> 10000	<u>Result</u> 11400	<u>Rec (%)</u> 101	<u>Spike</u> 10000	<u>Result</u> 11400	<u>Rec (%)</u> 102	<u>CL</u> 75-125	<u>RPD (%)</u> 0.46	<u>RPD CL</u> (< 25)
Batch Information										
Analytical Batch: WTC3101 Analytical Method: SM 53101 Instrument: TOC Analyzer 2 Analyst: EWW Analytical Date/Time: 6/23/20		PM								
Print Date: 07/09/2021 9:02:45AM										

SGS

Matrix Spike Summary										
Original Sample ID: 12135370 MS Sample ID: 1618518 MS MSD Sample ID: 1618519 M					Analysis Analysis	Date: 00 Date: 00	6/23/2021 6/23/2021 6/23/2021 urface, Eff.	20:19 20:33	1	
QC for Samples: 1213480001										
Results by SM 5310B										
		Ma	trix Spike ((ug/L)	Spike	e Duplicat	e (ug/L)			
<u>Parameter</u> Total Organic Carbon Average	<u>Sample</u> 504J	<u>Spike</u> 10000	<u>Result</u> 10600	<u>Rec (%)</u> 101	<u>Spike</u> 10000	<u>Result</u> 10700	<u>Rec (%)</u> 102	<u>CL</u> 75-125	<u>RPD (%)</u> 0.42	<u>RPD CL</u> (< 25)
Batch Information										
Analytical Batch: WTC3101 Analytical Method: SM 5310B Instrument: TOC Analyzer 2 Analyst: EWW Analytical Date/Time: 6/23/20		⊃M								
Print Date: 07/09/2021 9:02:45AM										

Method Blank							
Blank ID: MB for HBN 18 Blank Lab ID: 1619255	321451 [XXX/45064]	Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1213480001							
Results by AK102							
<u>Parameter</u> Diesel Range Organics	<u>Results</u> 0.181J	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L			
Surrogates				Ũ			
5a Androstane (surr)	93.4	60-120		%			
Batch Information Analytical Batch: XFC1 Analytical Method: AK1 Instrument: Agilent 789 Analyst: IVM	02	Prep Me Prep Da Prep Init	tch: XXX45064 thod: SW35200 te/Time: 6/28/2 ial Wt./Vol.: 250 tract Vol: 1 mL	021 4:33:36PM			

Print Date: 07/09/2021 9:02:46AM

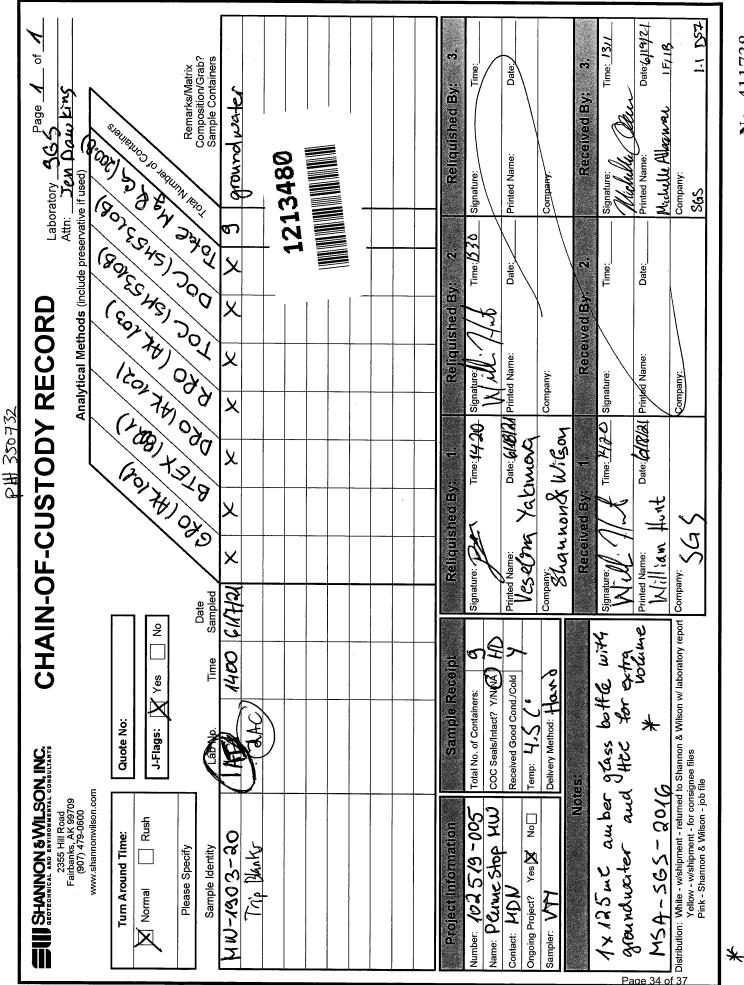
Blank Spike ID: LCS for HBN 1213480 [XXX45064] Blank Spike Lab ID: 1619256 Date Analyzed: 06/29/2021 14:07 Spike Duplicate ID: LCSD for HBN 1213480 [XXX45064] Spike Duplicate Lab ID: 1619257 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213480001

Results by AK102									
		Blank Spike	e (mg/L)	mg/L) Spike Duplicate (mg/L)					
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	20.8	104	20	20.4	102	(75-125)	2.20	(< 20)
Surrogates									
5a Androstane (surr)	0.4		101	0.4		103	(60-120)	1.60	
Batch Information									
Analytical Batch: XFC15977				Pre	p Batch: X	XX45064			
Analytical Method: AK102					p Method:				
Instrument: Agilent 7890B F						e: 06/28/202			
Analyst: IVM						0	 Extract Vo Extract Vol 		
				Dup		701 20 Mg/L			

Print Date: 07/09/2021 9:02:49AM

n-Triacontane-d62 (surr) 102 60-120 % Batch Information Analytical Batch: XFC15977 Analytical Method: AK103 Prep Batch: XXX45064 Prep Method: SW3520C	sults LOQ/CL DL Units 250U 0.500 0.150 mg/L 2 60-120 % Prep Batch: XXX45064 Prep Method: SW3520C Prep Date/Time: 6/28/2021 4:33:36PM Prep Initial Wt./vol.: 250 mL	Method Blank					
1213480001 Results by AK103 Parameter Results LOQ/CL DL Variable 0.500 Residual Range Organics 0.250U 0.500 0.150 Surrogates n-Triacontane-d62 (surr) 102 60-120 % Batch Information Analytical Batch: XFC15977 Analytical Method: AK103 Prep Batch: XXX45064 Prep Method: SW3520C	2 0.500 0.150 mg/L 2 60-120 % Prep Batch: XXX45064 Prep Method: SW3520C Prep Date/Time: 6/28/2021 4:33:36PM Prep Initial Wt./Vol.: 250 mL		451 [XXX/45064]	Matrix	: Water (Surfa	ce, Eff., Ground)	
ParameterResultsLOQ/CLDLUnitsResidual Range Organics0.250U0.5000.150mg/LSurrogates n-Triacontane-d62 (surr)10260-120%Batch InformationAnalytical Batch: XFC15977 Analytical Method: AK103Prep Batch: XXX45064 Prep Method: SW3520C	250U 0.500 0.150 mg/L 2 60-120 % Prep Batch: XXX45064 Prep Method: SW3520C Prep Date/Time: 6/28/2021 4:33:36PM Prep Initial Wt./Vol.: 250 mL						
Residual Range Organics 0.250U 0.500 0.150 mg/L Surrogates n-Triacontane-d62 (surr) 102 60-120 % Batch Information Prep Batch: XXX45064 Prep Method: SW3520C	250U 0.500 0.150 mg/L 2 60-120 % Prep Batch: XXX45064 Prep Method: SW3520C Prep Date/Time: 6/28/2021 4:33:36PM Prep Initial Wt./Vol.: 250 mL	Results by AK103					
n-Triacontane-d62 (surr) 102 60-120 % Batch Information Analytical Batch: XFC15977 Analytical Method: AK103 Prep Batch: XXX45064 Prep Method: SW3520C	Prep Batch: XXX45064 Prep Method: SW3520C Prep Date/Time: 6/28/2021 4:33:36PM Prep Initial Wt./Vol.: 250 mL						
Analytical Method: AK103 Prep Method: SW3520C	Prep Method: SW3520C Prep Date/Time: 6/28/2021 4:33:36PM Prep Initial Wt./Vol.: 250 mL	Surrogates n-Triacontane-d62 (surr)	102	60-120		%	
Analytical Method: AK103 Prep Method: SW3520C	Prep Method: SW3520C Prep Date/Time: 6/28/2021 4:33:36PM Prep Initial Wt./Vol.: 250 mL	3atch Information					
Analyst: IVM Prep Initial Wt./Vol.: 250 mL		Analytical Method: AK103 Instrument: Agilent 7890B Analyst: IVM	F	Prep Me Prep Da Prep Init	thod: SW35200 te/Time: 6/28/20 ial Wt./Vol.: 250	021 4:33:36PM	



Blank Spike ID: LCS for HBN 1213480 [XXX45064] Blank Spike Lab ID: 1619256 Date Analyzed: 06/29/2021 14:07 Spike Duplicate ID: LCSD for HBN 1213480 [XXX45064] Spike Duplicate Lab ID: 1619257 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213480001

Results by AK103			_						
		Blank Spike	e (mg/L)	ng/L) Spike Duplicate (mg/L)					
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Residual Range Organics	20	20.9	105	20	20.0	100	(60-120)	4.50	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4		92	0.4		93	(60-120)	0.49	
Batch Information									
Analytical Batch: XFC15977				Pre	p Batch: X	XX45064			
Analytical Method: AK103					p Method:				
Instrument: Agilent 7890B F						e: 06/28/202			
Analyst: IVM						0	Extract Vo		
				Dup	be init Wt./V	/oi.: 20 mg/L	Extract Vol	: T ML	

Print Date: 07/09/2021 9:02:54AM

No. 411738

e-Sample Receipt Form FBK

SGS Workorder #:			S&W			S&	W	
Review Crite	ria	Condition (Yes,	No, N/A	Except	ions No	oted belo	DW.	
Chain of Custody	/ Temperature Require	ements	Yes Ex	emption permit	ted if sam	pler hand	carries/deliv	ərs.
Were Cus	tody Seals intact? Note # & lo	cation N/A						
	COC accompanied sam	nples? Yes						
DOD: Were samples rece	ived in COC corresponding co	olers?						
Y	es **Exemption permitted if cl	hilled & colle	cted <8 hours ago), or for sample	s where c	hilling is n	ot required	
Temperature blank c	ompliant* (i.e., 0-6 °C after	CF)? Yes	Cooler ID:	1	@	4.5 °C	Therm. ID:	
			Cooler ID:		@	°C	Therm. ID:	
If samples received without a temperature b			Cooler ID:		@	°C	Therm. ID:	
locumented instead & "COOLER TEMP" will be r be noted if neither i		eu wiii	Cooler ID:		@	°C	Therm. ID:	
*lf >6°C, were sa	amples collected <8 hours a	ago?						
lf <0°C, w	ere sample containers ice f	free?						
Note: Identify containers receive Use form F	S-0029 if more space is ne							
Holding Time / Documentat				rm F-083 "Sam	ple Guide	e" for speci	fic holding tir	nes.
Do samples match COC** (i.e.,sa **Note: If times differ <1hr, re **Note: If sample information on containers diffe	ecord details & login per CC	DC.	Ţ					
Were samples in good condi								
Were analytical requests clear? (i.e.,	method is specified for ana	alyses						
were analytical requests clear? (i.e., method is specified for a with multiple option for analysis (Ex: BTEX,		letals)						
		<u> </u>	1					
	The second se	the state of the s						
Were Trip Blanks (i.e., VOAs	s, LL-Hg) in cooler with sam	nples? N/A					-	
Were Trip Blanks (i.e., VOAs Were all water VOA vials free of h	s, LL-Hg) in cooler with sam eadspace (i.e., bubbles ≤ 6	nples? N/A Smm)? N/A						
Were Trip Blanks (i.e., VOAs Were all water VOA vials free of h Were all soil VOAs	s, LL-Hg) in cooler with sam eadspace (i.e., bubbles ≤ 6 field extracted with MeOH+	nples? N/A Smm)? N/A -BFB? N/A		EX				
Were Trip Blanks (i.e., VOAs Were all water VOA vials free of h Were all soil VOAs For Rush/Short Hold Time,	s, LL-Hg) in cooler with sam eadspace (i.e., bubbles ≤ 6 field extracted with MeOH+ was RUSH/Short HT email	nples? N/A Smm)? N/A -BFB? N/A sent? Yes	14 day hold BTI		avimpad	t data qual	ity	
Were Trip Blanks (i.e., VOAs Were all water VOA vials free of h Were all soil VOAs For Rush/Short Hold Time,	s, LL-Hg) in cooler with sam eadspace (i.e., bubbles ≤ 6 field extracted with MeOH+ was RUSH/Short HT email ", answer above indicates non	nples? N/A 5mm)? N/A -BFB? N/A sent? Yes 1-compliance	14 day hold BTI with standard pro		ay impact	t data qual	Ity.	
Were Trip Blanks (i.e., VOAs Were all water VOA vials free of h Were all soil VOAs For Rush/Short Hold Time,	s, LL-Hg) in cooler with sam eadspace (i.e., bubbles ≤ 6 field extracted with MeOH+ was RUSH/Short HT email ", answer above indicates non	nples? N/A 5mm)? N/A -BFB? N/A sent? Yes 1-compliance	14 day hold BTI		ay impact	t data qual	ity and the second	

e-Sample Receipt Form

000

SGS	SGS Workorder #:	1	2134	80	1	213480	
Rev	view Criteria	Condition (Yes,	No, N/A	Exce	eptions No	ted below	
<u>Chain of</u>	Custody / Temperature Requi			I/A Exemption pe	rmitted if sam	oler hand carries/deli	vers.
	Were Custody Seals intact? Note # &	location Yes	1F,1B				
	COC accompanied sa	amples? Yes					
DOD: Were sa	amples received in COC corresponding c	coolers? N/A					
	N/A **Exemption permitted if		cted <8 hou	urs ago, or for sam	ples where ch	nilling is not required	1
Temperatu	ure blank compliant* (i.e., 0-6 °C afte	er CF)? Yes	Cooler ID:	1	@	1.1 °C Therm. ID	D57
			Cooler ID:		@	°C Therm. ID	
	emperature blank, the "cooler temperature" will EMP" will be noted to the right. "ambient" or "ch		Cooler ID:		@	°C Therm. ID	
	ted if neither is available.		Cooler ID:		@	°C Therm. ID	
			Cooler ID:		@	°C Therm. ID	
*lf >6°	C, were samples collected <8 hours	ago? N/A					
	If <0°C, were sample containers ice	e free? N/A					
	rs received at non-compliant temper Jse form FS-0029 if more space is n						
	se form FS-0029 if more space is h	eeded.					
Holding Time / Do	ocumentation / Sample Condition Re	equirements	Note: Refer	to form F-083 "Samp	le Guide" for spe	cific holding times.	
	/ere samples received within holding			· · · · · · ·			
Do samples match COC	** (i.e.,sample IDs,dates/times colle	ected)? Yes					
**Note: If times diff	er <1hr, record details & login per C	OC.					
***Note: If sample information on co	ntainers differs from COC, SGS will default to C	COC information					
	lear? (i.e., method is specified for an						
with mul	tiple option for analysis (Ex: BTEX, I	Metals)					
			Y	es ***Exemption	permitted for r	<u>metals (e.g,200.8/602</u>	<u>20B).</u>
Were proper containers	s (type/mass/volume/preservative***))used? Yes					
	Volatile / LL-Hg Req	uiromonte					
Were Trin Blanks (i.e., VOAs, LL-Hg) in cooler with sar						
-	s free of headspace (i.e., bubbles \leq	-					
	soil VOAs field extracted with MeOH						
	nt: Any "No", answer above indicates no		with standa	rd procedures and	may impact of	data quality.	
		Il notes (if a					
			- P. IOGOIO				

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1213480001-A	HCL to $pH < 2$	ОК			
1213480001-B	HCL to $pH < 2$	OK			
1213480001-C	HCL to pH < 2	ОК			
1213480001-D	HCL to $pH < 2$	ОК			
1213480001-E	HCL to $pH < 2$	ОК			
1213480001-F	HNO3 to pH < 2	ОК			
1213480001-G	HCL to $pH < 2$	ОК			
1213480001-H	HCL to $pH < 2$	ОК			
1213480001-I	HCL to $pH < 2$	ОК			
1213480002-A	HCL to $pH < 2$	ОК			
1213480002-B	HCL to $pH < 2$	ОК			
1213480002-C	HCL to $pH < 2$	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Laboratory Data Review Checklist

Completed By:

Rachel Willis

Title:

Environmental Scientist

Date:

July 12, 2021

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

SGS North America, Inc.

Laboratory Report Number:

1213480

Laboratory Report Date:

July 9, 2021

CS Site Name:

DOT&PF Fairbanks International PFAS PlumeStop Monitoring

ADEC File Number:

100.38.277

Hazard Identification Number:

26816

Laboratory Report Date:

July 9, 2021

CS Site Name:

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

Yes \boxtimes No \square N/A \square Comments:
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
Yes No N/A Comments:
The requested analyses were conducted by SGS North America, Inc. in Anchorage, AK.
2. <u>Chain of Custody (CoC)</u>
a. CoC information completed, signed, and dated (including released/received by)?
Yes No N/A Comments:
b. Correct analyses requested?
Yes \boxtimes No \square N/A \square Comments:
3. Laboratory Sample Receipt Documentation
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
Yes No N/A Comments:
The sample cooler was 1.1°C upon receipt in Fairbanks, and 4.5°C upon receipt in Anchorage.
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
Yes \boxtimes No \square N/A \square Comments:

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

The sample receipt form notes that the samples were received in good condition.

Laboratory Report Date:

July 9, 2021

CS Site Name:

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

	Yes \square No \square N/A \boxtimes	Comments:
Т	The sample receipt form notes no c	liscrepancies.
e.	. Data quality or usability affecte	ed?
		Comments:
D	Data quality and/or usability are no	t affected.
4. <u>(</u>	Case Narrative	
8	a. Present and understandable?	
_	Yes⊠ No□ N/A□	Comments:
ł	b. Discrepancies, errors, or QC fa	ailures identified by the lab?
	Yes⊠ No□ N/A□	Comments:
]	The case narrative indicates the m	etals MS recovery for calcium does not meet laboratory criteria.
C	c. Were all corrective actions doe	cumented?
	Yes \Box No \Box N/A \boxtimes	Comments:
1	No corrective actions necessary.	
c	d. What is the effect on data qual	ity/usability according to the case narrative?
		Comments:
]	The results may be affected; see the	ne following sections for additional information.
5. <u>Sam</u>	nples Results	
8	a. Correct analyses performed/rep	ported as requested on COC?
	Yes⊠ No□ N/A□	Comments:

Laboratory Report Date:

July 9, 2021

CS Site Name:

b. All applicable holding times met?

 Yes
 No
 N/A
 Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Soil samples were not included with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \boxtimes No \square N/A \square Comments:

e. Data quality or usability affected?

Data quality or usability are not affected.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \square No \boxtimes N/A \square Comments:

Method blanks were not reported for GRO preparatory batches VXX37301 and VXX37303. GRO were not detected in the project samples or trip blank; therefore, the results are unaffected by this omission.

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \square No \boxtimes N/A \square Comments:

DRO were detected in the method blank sample at an estimated concentration of 0.181 mg/L.

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

DRO were not detected in the project sample associated with the MB detection.

Laboratory Report Date:

July 9, 2021

CS Site Name:

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

Flags not required; see above

v. Data quality or usability affected?

Comments:

No; see above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

Two LCS samples were reported for TOC analysis. An LCS/LCSD pair was reported for GRO, DRO, RRO, and BTEX analysis.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

An LCS was reported for calcium and magnesium analyses.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

None; see above.

Laboratory Report Date:

July 9, 2021

CS Site Name:

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability were not affected; see above.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

Two MS/MSD samples were reported for TOC analysis.

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

Only an MS was reported for calcium and magnesium analysis; we do not have a measure of analytical precision for these analytes.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes \square No \boxtimes N/A \square Comments:

Percent recoveries were within laboratory limits for MS/MSD samples with exception of calcium in preparatory batch MXX34326. The native concentration of calcium is over ten times the spiking concentration for the MS. Additionally, the spiked sample is not part of our project sample set.

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes \boxtimes No \square N/A \boxtimes Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

Due to the high concentration of calcium in the native sample, sample MW-1903-20 is not affected by the MS %R failure.

Laboratory Report Date:

July 9, 2021

CS Site Name:

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

None; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality or usability is not affected.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

Surrogates are reported for GRO, DRO, RRO, and BTEX analytes.

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

There were no surrogate recovery failures associated with this work order.

iv. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

July 9, 2021

CS Site Name:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \boxtimes No \square N/A \square Comments:

Samples were shipped in one cooler. The TB was in the cooler with the project sample.

iii. All results less than LOQ and project specified objectives?

Yes \square No \boxtimes N/A \square Comments:

GRO were detected at an estimated concentration of 0.0387 mg/L in the trip blank sample submitted with the order.

iv. If above LOQ or project specified objectives, what samples are affected? Comments:

GRO were not detected in the associated project sample; no samples are affected.

v. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \square No \square N/A \boxtimes Comments:

Only one project sample was submitted.

ii. Submitted blind to lab?

Yes \square No \square N/A \boxtimes Comments:

Only one project sample was submitted.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: (R_1-R_2) x

 $\frac{(R_1-R_2)}{((R_1+R_2)/2)}$ x 100

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

Yes \square No \square N/A \boxtimes Comments:

N/A; only one sample was submitted.

Laboratory Report Date:

July 9, 2021

CS Site Name:

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

N/A; see above.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

Reusable equipment was not used for sample collection. Therefore, decontamination or equipment blank samples were not required. A peri-pump was used to collect the requested analytes.

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

See above.

ii. If above LOQ or project specified objectives, what samples are affected?

Comments:

N/A; see above.

iii. Data quality or usability affected?

Comments:

No; see above.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes \square No \square N/A \boxtimes Comments:

No additional flags or qualifiers are required.

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-75271-1

Client Project/Site: Plume Stop MW

For:

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Marcy Nadel

Authorized for release by: 6/30/2021 10:54:55 AM David Alltucker, Project Manager I (916)374-4383 David Alltucker@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

5

Qualifiers

L	С	M	S

J

TEQ

TNTC

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Qualifier **Qualifier Description** Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Glossary Abbreviation These commonly used abbreviations may or may not be present in this report.

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	-
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	2
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

Job ID: 320-75271-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Receipt

The sample was received on 6/22/2021 2:38 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 5.4° C.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-501199.

Method 3535: The following sample was dark gray prior to extraction: MW-1903-20 (320-75271-1).

Method 3535: The following sample was light yellow prior to extraction: MW-1903-20 (320-75271-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Shannon & Wilson, Inc Project/Site: Plume Stop MW

Client Sample ID: MW-1903-20

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Ргер Туре
Perfluorobutanoic acid (PFBA)	20	4.6	2.2	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoropentanoic acid (PFPeA)	27	1.8	0.45	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.29 J	1.8	0.18	ng/L	1	EPA 537(Mod)	Total/NA

5

Lab Sample ID: 320-75271-1

Client Sample ID: MW-1903-20 Date Collected: 06/17/21 14:00 Date Received: 06/22/21 14:38

Lab Sample ID: 320-75271-1 Matrix: Water

Matrix: Water

nalyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	20		4.6	2.2	ng/L		06/24/21 04:50	06/24/21 15:16	1
Perfluoropentanoic acid (PFPeA)	27		1.8	0.45	0		06/24/21 04:50	06/24/21 15:16	1
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.53	ng/L		06/24/21 04:50	06/24/21 15:16	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		06/24/21 04:50	06/24/21 15:16	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.78	ng/L		06/24/21 04:50	06/24/21 15:16	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		06/24/21 04:50	06/24/21 15:16	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		06/24/21 04:50	06/24/21 15:16	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		06/24/21 04:50	06/24/21 15:16	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		06/24/21 04:50	06/24/21 15:16	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		06/24/21 04:50	06/24/21 15:16	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		06/24/21 04:50	06/24/21 15:16	1
Perfluorobutanesulfonic acid (PFBS)	0.29	J	1.8	0.18	ng/L		06/24/21 04:50	06/24/21 15:16	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.52	ng/L		06/24/21 04:50	06/24/21 15:16	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.17	-		06/24/21 04:50	06/24/21 15:16	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.49			06/24/21 04:50	06/24/21 15:16	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.29	-		06/24/21 04:50	06/24/21 15:16	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.89	ng/L		06/24/21 04:50	06/24/21 15:16	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6		ng/L		06/24/21 04:50	06/24/21 15:16	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6		ng/L			06/24/21 15:16	1
3:2 FTS	ND		4.6		ng/L		06/24/21 04:50	06/24/21 15:16	1
3:2 FTS	ND		1.8	0.42			06/24/21 04:50	06/24/21 15:16	1
HFPO-DA (GenX)	ND		3.7	1.4	ng/L		06/24/21 04:50	06/24/21 15:16	1
9CI-PF3ONS	ND		1.8	0.22	ng/L		06/24/21 04:50	06/24/21 15:16	1
11CI-PF3OUdS	ND		1.8	0.29	0		06/24/21 04:50	06/24/21 15:16	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.37	ng/L		06/24/21 04:50	06/24/21 15:16	1
sotope Dilution	%Recovery	Qualifier Li	mits				Prepared	Analyzed	Dil Fac
13C8 FOSA	88	50) - 150				06/24/21 04:50	06/24/21 15:16	1
13C4 PFBA	94	50) - 150				06/24/21 04:50	06/24/21 15:16	1
13C5 PFPeA	83	50	0_150				06/24/21 04:50	06/24/21 15:16	1
							06/04/04 04.50	06/24/21 15:16	1
13C2 PFHxA	93	50	- 150				06/24/21 04.50		
13C2 PFHxA 13C4 PFHpA	93 88) - 150) - 150					06/24/21 15:16	1
		50					06/24/21 04:50	06/24/21 15:16 06/24/21 15:16	1 1
13C4 PFHpA	88	50 50) _ 150				06/24/21 04:50 06/24/21 04:50		
13C4 PFHpA 13C4 PFOA 13C5 PFNA	88 90	50 50 50) - 150) - 150) - 150				06/24/21 04:50 06/24/21 04:50 06/24/21 04:50	06/24/21 15:16 06/24/21 15:16	1
13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA	88 90 93 97	50 50 50 50) - 150) - 150) - 150) - 150				06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50	06/24/21 15:16 06/24/21 15:16 06/24/21 15:16	1 1 1
13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUnA	88 90 93	50 50 50 50 50 50) - 150) - 150) - 150) - 150) - 150				06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50	06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16	1 1
13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFUnA	88 90 93 97 94 93	50 50 50 50 50 50 50) - 150) - 150) - 150) - 150) - 150) - 150				06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50	06/24/21 15:16 06/24/21 15:16 06/24/21 15:16	1 1 1 1
13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA	88 90 93 97 94 93 96	50 50 50 50 50 50 50 50	0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150				06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50	06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16	1 1 1 1 1 1
13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS	88 90 93 97 94 93 96 97	50 50 50 50 50 50 50 50 50 50	0 - 150 0 - 150				06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50	06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16	1 1 1 1 1 1 1
13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	88 90 93 97 94 93 96 97 83	50 50 50 50 50 50 50 50 50 50 50) - 150) - 150				06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50	06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16	1 1 1 1 1 1 1 1 1
13C4 PFHpA 13C5 PFNA 13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS	88 90 93 97 94 93 96 97 83 83	50 50 50 50 50 50 50 50 50 50 50 50 50 5) - 150) - 150				06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50	06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16	1 1 1 1 1 1 1 1 1 1
13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS 13-NMeFOSAA	88 90 93 97 94 93 96 97 83 82 101	50 50 50 50 50 50 50 50 50 50 50 50 50 5) - 150) - 150				06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50 06/24/21 04:50	06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16	1 1 1 1 1 1 1 1 1 1
13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS 13-NMeFOSAA 15-NEtFOSAA	88 90 93 97 94 93 96 97 83 82 101 93	50 50 50 50 50 50 50 50 50 50 50 50 50 5) - 150) - 150				06/24/21 04:50 06/24/21 04:50	06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16	1 1 1 1 1 1 1 1 1 1
13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFDOA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS	88 90 93 97 94 93 96 97 83 82 101	50 50 50 50 50 50 50 50 50 50 50 50 50 5) - 150) - 150				06/24/21 04:50 06/24/21 04:50	06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16 06/24/21 15:16	1 1 1 1 1 1 1 1 1 1

Eurofins TestAmerica, Sacramento

PFBA

(50-150)

94

95

93

96

PFDoA

(50 - 150)

93

101

94

97

M262FTS M282FTS HFPODA (50-150)

88

90

88

104

PFOSA

(50-150)

88

90

86

92

PFUnA

(50-150)

94

92

94

93

(50-150)

86

88

98

98

Lab Sample ID

LCS 320-501199/2-A

MB 320-501199/1-A

Lab Sample ID

LCS 320-501199/2-A

MB 320-501199/1-A

Lab Sample ID

LCS 320-501199/2-A

MB 320-501199/1-A

LCSD 320-501199/3-A

320-75271-1

LCSD 320-501199/3-A

320-75271-1

LCSD 320-501199/3-A

320-75271-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Matrix: Water

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

MW-1903-20

Method Blank

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

MW-1903-20

Method Blank

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

MW-1903-20

Method Blank

-15				Pr	ер Туре:	Total/NA
Perce	ent Isotope	Dilution Re	coverv (Ac			
FBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA
-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
94	83	93	88	90	93	97
95	84	94	97	93	93	96
93	85	89	92	93	94	98
96	91	90	93	97	97	98
Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	.imits)	
DoA	PFTDA	C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS
-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
93	96	97	83	82	101	93
01	114	107	92	93	98	91
94	107	103	90	92	96	92
97	101	106	91	89	103	92
Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	.imits)	
2FTS	HFPODA			-		
-150)	(50-150)					
88	85					
90	90					
88	87					

Surrogate Legend

PFOSA = 13C8 FOSA PFBA = 13C4 PFBA PFPeA = 13C5 PFPeA PFHxA = 13C2 PFHxA C4PFHA = 13C4 PFHpA PFOA = 13C4 PFOA PFNA = 13C5 PFNA PFDA = 13C2 PFDA PFUnA = 13C2 PFUnA PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA C3PFBS = 13C3 PFBS PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS HFPODA = 13C3 HFPO-DA

7

Eurofins TestAmerica, Sacramento

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Lab Sample ID: MB 320-501199/1-A Matrix: Water Analysis Batch: 501370

-	MB	МВ								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Perfluorobutanoic acid (PFBA)	ND		5.0	2.4	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		06/24/21 04:50	06/24/21 14:48	1	F
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.19	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32	ng/L		06/24/21 04:50	06/24/21 14:48	1	
Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.98	ng/L		06/24/21 04:50	06/24/21 14:48	1	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		06/24/21 04:50	06/24/21 14:48	1	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		06/24/21 04:50	06/24/21 14:48	1	
6:2 FTS	ND		5.0	2.5	ng/L		06/24/21 04:50	06/24/21 14:48	1	
8:2 FTS	ND		2.0	0.46	ng/L		06/24/21 04:50	06/24/21 14:48	1	
HFPO-DA (GenX)	ND		4.0	1.5	ng/L		06/24/21 04:50	06/24/21 14:48	1	
9CI-PF3ONS	ND		2.0	0.24	ng/L		06/24/21 04:50	06/24/21 14:48	1	
11CI-PF3OUdS	ND		2.0	0.32	ng/L		06/24/21 04:50	06/24/21 14:48	1	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		06/24/21 04:50	06/24/21 14:48	1	

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C8 FOSA	92		50 - 150	06/24/21 04:50	06/24/21 14:48	1
13C4 PFBA	96		50 - 150	06/24/21 04:50	06/24/21 14:48	1
13C5 PFPeA	91		50 - 150	06/24/21 04:50	06/24/21 14:48	1
13C2 PFHxA	90		50 - 150	06/24/21 04:50	06/24/21 14:48	1
13C4 PFHpA	93		50 - 150	06/24/21 04:50	06/24/21 14:48	1
13C4 PFOA	97		50 - 150	06/24/21 04:50	06/24/21 14:48	1
13C5 PFNA	97		50 - 150	06/24/21 04:50	06/24/21 14:48	1
13C2 PFDA	98		50 - 150	06/24/21 04:50	06/24/21 14:48	1
13C2 PFUnA	93		50 - 150	06/24/21 04:50	06/24/21 14:48	1
13C2 PFDoA	97		50 - 150	06/24/21 04:50	06/24/21 14:48	1
13C2 PFTeDA	101		50 - 150	06/24/21 04:50	06/24/21 14:48	1
13C3 PFBS	106		50 - 150	06/24/21 04:50	06/24/21 14:48	1
18O2 PFHxS	91		50 - 150	06/24/21 04:50	06/24/21 14:48	1
13C4 PFOS	89		50 - 150	06/24/21 04:50	06/24/21 14:48	1
d3-NMeFOSAA	103		50 - 150	06/24/21 04:50	06/24/21 14:48	1
d5-NEtFOSAA	92		50 - 150	06/24/21 04:50	06/24/21 14:48	1
M2-6:2 FTS	98		50 - 150	06/24/21 04:50	06/24/21 14:48	1
M2-8:2 FTS	104		50 - 150	06/24/21 04:50	06/24/21 14:48	1

Eurofins TestAmerica, Sacramento

Prep Type: Total/NA

Prep Batch: 501199

Client Sample ID: Method Blank

Perfluorobutanoic acid (PFBA)

Perfluoropentanoic acid (PFPeA)

Perfluorohexanoic acid (PFHxA)

Perfluoroheptanoic acid (PFHpA)

Perfluorooctanoic acid (PFOA)

Perfluorononanoic acid (PFNA)

Perfluorodecanoic acid (PFDA)

Perfluoroundecanoic acid

(PFUnA)

QC Sample Results

8

			Sample	VG21	มเอ					
Client: Shannon & Wilson, Inc Project/Site: Plume Stop MW					Job ID: 320-75271					5271-1
Method: EPA 537(Mod) -	PFAS for C	QSM 5.3	, Table B-	15 (C	ontinue	d)				
Lab Sample ID: MB 320-501199/1-A							Clie	ent Samp	ole ID: Method	
Matrix: Water Analysis Batch: 501370									Prep Type: To Prep Batch:	
	MB	MB								
Isotope Dilution	%Recovery	Qualifier	Limits				P	repared	Analyzed	Dil Fac
13C3 HFPO-DA	88		50 - 150				06/2	24/21 04:50	06/24/21 14:48	1
Lab Sample ID: LCS 320-501	199/2-A					Clie	ent Sai	mple ID:	Lab Control S	Sample
Matrix: Water									Prep Type: To	otal/NA
Analysis Batch: 501370									Prep Batch:	
-			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

41.2

47.8

42.0

42.4

42.7

44.0

43.4

46.1

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 501199

103

120

105

106

107

110

108

115

73 - 129

72 - 129

72 - 129

72 - 130

71 - 133

69 - 130

71 - 129

69 - 133

Perfluorododecanoic acid			40.0	41.5	ng/L	104	72 - 134
(PFDoA)					· · · · · · · · · · · · · · · · · · ·		
Perfluorotridecanoic acid			40.0	43.4	ng/L	109	65 - 144
(PFTriA)			40.0	42.4	~~/l	106	71 - 132
Perfluorotetradecanoic acid (PFTeA)			40.0	42.4	ng/L	106	/1-132
(FFTeA) Perfluorobutanesulfonic acid			35.4	32.1	ng/L	91	72 - 130
(PFBS)			00.4	02.1	lig/L	01	72-100
Perfluorohexanesulfonic acid			36.4	38.6	ng/L	106	68 - 131
(PFHxS)							
Perfluoroheptanesulfonic Acid			38.1	40.0	ng/L	105	69 - 134
(PFHpS)							
Perfluorooctanesulfonic acid			37.1	40.9	ng/L	110	65 - 140
(PFOS) Perfluorodecanesulfonic acid			38.6	41.1	ng/L	107	53 - 142
(PFDS)			50.0	41.1	lig/L	107	55 - 142
Perfluorooctanesulfonamide			40.0	43.3	ng/L	108	67 - 137
(FOSA)					C C		
6:2 FTS			37.9	43.9	ng/L	116	64 - 140
8:2 FTS			38.3	42.4	ng/L	111	67 - 138
HFPO-DA (GenX)			40.0	41.4	ng/L	104	72 - 132
9CI-PF3ONS			37.3	41.7	ng/L	112	77 - 137
11CI-PF3OUdS			37.7	42.2	ng/L	112	76 - 136
4,8-Dioxa-3H-perfluorononanoic			37.7	40.8	ng/L	108	81 - 141
acid (ADONA)							
	LCS						
Isotope Dilution	%Recovery	Qualifier	Limits				
13C8 FOSA	90		50 - 150				
13C4 PFBA	95		50 - 150				
	01		E0 1E0				

Isotope Dilution	%Recovery	Qualifier	Limits
13C8 FOSA	90		50 - 150
13C4 PFBA	95		50 - 150
13C5 PFPeA	84		50 - 150
13C2 PFHxA	94		50 - 150
13C4 PFHpA	97		50 - 150
13C4 PFOA	93		50 - 150
13C5 PFNA	93		50 - 150
13C2 PFDA	96		50 - 150
13C2 PFUnA	92		50 - 150

Eurofins TestAmerica, Sacramento

Limits

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

LCS LCS

%Recovery Qualifier

101

114

107

92

93

98

91

88

90

90

Analysis Batch: 501370

Matrix: Water

Isotope Dilution

13C2 PFDoA

13C2 PFTeDA

13C3 PFBS

18O2 PFHxS

13C4 PFOS

d3-NMeFOSAA

d5-NEtFOSAA

13C3 HFPO-DA

Matrix: Water

Analysis Batch: 501370

M2-6:2 FTS

M2-8:2 FTS

Lab Sample ID: LCS 320-501199/2-A

Lab Sample ID: LCSD 320-501199/3-A

Job ID: 320-75271-1

Prep Type: Total/NA

Prep Batch: 501199

1 2 3 4 5 6 7 8

.....

nple Dup Total/NA n: 501199

Client Sample ID: Lab Control Samp	le Dup
Prep Type: To	otal/NA
Prep Batch:	50119 9
%Rec.	RPD

Client Sample ID: Lab Control Sample

Analysis Datch. 301370	Spike	Spike LCSD LCSD					RPD	
Analyte	Added	Result Quali		D %Rec	%Rec. Limits	RPD	Limit	1
Perfluorobutanoic acid (PFBA)	40.0	40.3	ng/L	$-\frac{1}{2}$ $\frac{70100}{101}$	73 - 129	2	30	
Perfluoropentanoic acid (PFPeA)	40.0	47.5	ng/L	119	72 - 129	1	30	
Perfluorohexanoic acid (PFHxA)	40.0	42.3	ng/L	106	72 - 129	1	30	
Perfluoroheptanoic acid (PFHpA)	40.0	41.9	ng/L	105	72 - 130	1	30	
Perfluorooctanoic acid (PFOA)	40.0	38.0	ng/L	95	71 - 133	12	30	
Perfluorononanoic acid (PFNA)	40.0	43.0	ng/L	107	69 - 130	2	30	
Perfluorodecanoic acid (PFDA)	40.0	41.7	ng/L	104	71 - 129	4	30	
Perfluoroundecanoic acid (PFUnA)	40.0	46.9	ng/L	117	69 - 133	2	30	
Perfluorododecanoic acid (PFDoA)	40.0	43.4	ng/L	108	72 - 134	4	30	
Perfluorotridecanoic acid (PFTriA)	40.0	44.0	ng/L	110	65 - 144	1	30	
Perfluorotetradecanoic acid (PFTeA)	40.0	44.4	ng/L	111	71 - 132	5	30	
Perfluorobutanesulfonic acid (PFBS)	35.4	31.7	ng/L	90	72 - 130	1	30	
Perfluorohexanesulfonic acid (PFHxS)	36.4	41.0	ng/L	113	68 - 131	6	30	
Perfluoroheptanesulfonic Acid (PFHpS)	38.1	40.6	ng/L	107	69 - 134	2	30	
Perfluorooctanesulfonic acid (PFOS)	37.1	39.8	ng/L	107	65 - 140	3	30	
Perfluorodecanesulfonic acid (PFDS)	38.6	43.0	ng/L	112	53 - 142	5	30	
Perfluorooctanesulfonamide (FOSA)	40.0	43.2	ng/L	108	67 - 137	0	30	
6:2 FTS	37.9	37.7	ng/L	99	64 - 140	15	30	
8:2 FTS	38.3	45.2	ng/L	118	67 - 138	6	30	
HFPO-DA (GenX)	40.0	43.5	ng/L	109	72 - 132	5	30	
9CI-PF3ONS	37.3	42.3	ng/L	114	77 - 137	1	30	
11CI-PF3OUdS	37.7	42.7	ng/L	113	76 - 136	1	30	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	37.7	39.3	ng/L	104	81 - 141	4	30	

QC Sample Results

Job ID: 320-75271-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C8 FOSA	86		50 - 150
13C4 PFBA	93		50 - 150
13C5 PFPeA	85		50 - 150
13C2 PFHxA	89		50 - 150
13C4 PFHpA	92		50 - 150
13C4 PFOA	93		50 - 150
13C5 PFNA	94		50 - 150
13C2 PFDA	98		50 - 150
13C2 PFUnA	94		50 - 150
13C2 PFDoA	94		50 - 150
13C2 PFTeDA	107		50 - 150
13C3 PFBS	103		50 - 150
18O2 PFHxS	90		50 - 150
13C4 PFOS	92		50 - 150
d3-NMeFOSAA	96		50 - 150
d5-NEtFOSAA	92		50 - 150
M2-6:2 FTS	98		50 - 150
M2-8:2 FTS	88		50 - 150
13C3 HFPO-DA	87		50 - 150

EPA 537(Mod)

501199

LCMS

Prep Batch: 501199

LCSD 320-501199/3-A

Lab Control Sample Dup

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-75271-1	MW-1903-20	Total/NA	Water	3535	
MB 320-501199/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-501199/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-501199/3-A	Lab Control Sample Dup	Total/NA	Water	3535	
nalysis Batch: 5013		Prep Type	Matrix	Method	Prep Batch
Lab Sample ID	Client Sample ID MW-1903-20	Prep Type Total/NA	Matrix Water	Method EPA 537(Mod)	Prep Batch 501199
nalysis Batch: 5013 Lab Sample ID 320-75271-1 MB 320-501199/1-A	Client Sample ID				•

Total/NA

Water

Matrix: Water

Lab Sample ID: 320-75271-1

Client Sample ID: MW-1903-20 Date Collected: 06/17/21 14:00 Date Received: 06/22/21 14:38

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			273.8 mL	10.0 mL	501199	06/24/21 04:50	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			501370	06/24/21 15:16	S1M	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: Shannon & Wilson Project/Site: Plume Stop I			Job ID: 320-75271-1			
Laboratory: Eurofins TestAmerica, Sacramento The accreditations/certifications listed below are applicable to this report.						
Authority	Program	Identification Number	Expiration Date			
Alaska (UST)	State	17-020	02-20-24	Ę		
				1		

Eurofins TestAmerica, Sacramento

^ 4:4-4: 0

Method Summary

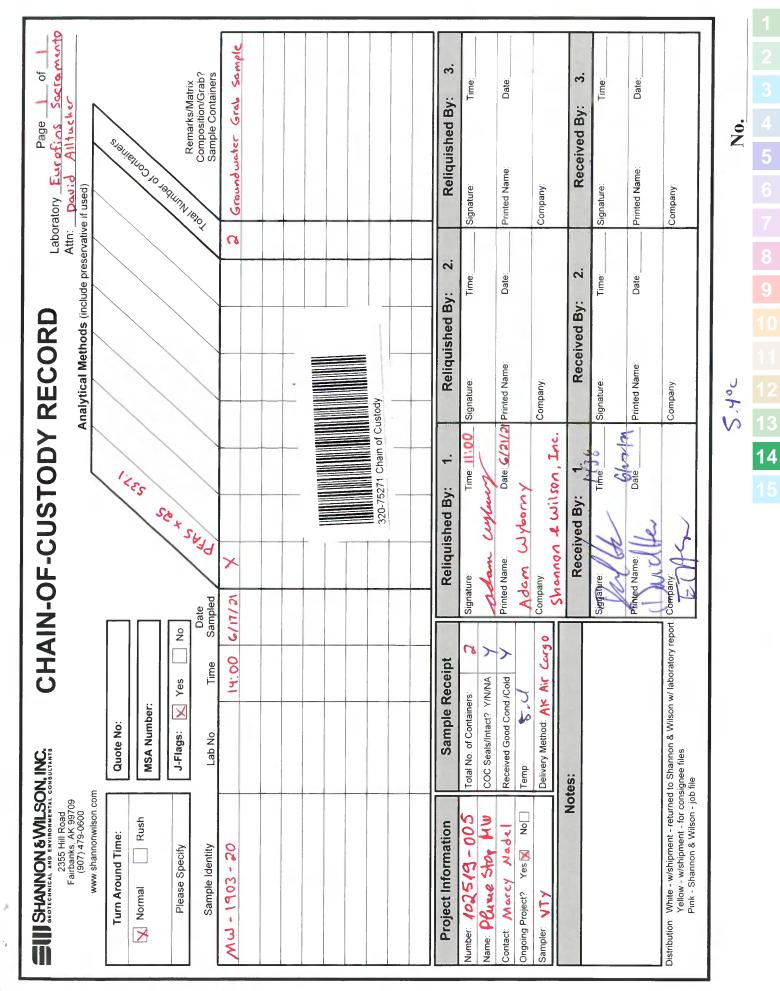
Client: Shannon & Wilson, Inc Project/Site: Plume Stop MW

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.3, Table B-15	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.


Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: Plume Stop MW

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-75271-1	MW-1903-20	Water	06/17/21 14:00	06/22/21 14:38	

Client: Shannon & Wilson, Inc

Login Number: 75271 List Number: 1 Creator: Her, David A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seals
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	Only gel packs
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-75271-1

List Source: Eurofins TestAmerica, Sacramento

Laboratory Data Review Checklist

Completed By:

Rachel Willis

Title:

Environmental Scientist

Date:

July 12, 2021

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)

Laboratory Report Number:

320-75271-1

Laboratory Report Date:

June 30, 2021

CS Site Name:

DOT&PF Fairbanks International PFAS PlumeStop Monitoring

ADEC File Number:

100.38.277

Hazard Identification Number:

26816

Laboratory Report Date:

June 30, 2021

CS Site Name:

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?

 $Yes \boxtimes No \square N/A \square Comments:$

The DEC certified TestAmerica of West Sacramento, CA for the analysis of per- and polyfluorinated alkyl substances (PFAS) on February 11, 2021 by PFAS by LCMSMS compliant with QSM Version 5.3 Table B-15. These reported analytes were included in the DEC's Contaminated Sites Laboratory Approval 17-020.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes \square No \square N/A \boxtimes Comments:

The requested analyses were conducted by TestAmerica of West Sacramento, CA.

- 2. Chain of Custody (CoC)
 - a. CoC information completed, signed, and dated (including released/received by)?

Yes⊠	No□	N/A	Comments:
------	-----	-----	-----------

b. Correct analyses requested?

Yes \boxtimes No \square N/A \square Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes \boxtimes No \square N/A \square	Comments:
--	-----------

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \square No \square N/A \boxtimes Comments:

Samples do not require preservation other than temperature.

Laboratory Report Date:

June 30, 2021

CS Site Name:

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

The sample receipt form notes that the samples were received in good condition.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \square No \square N/A \boxtimes Comments:

The sample receipt form notes no discrepancies.

e. Data quality or usability affected?

Comments:

Data quality and/or usability are not affected.

4. <u>Case Narrative</u>

a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

The case narrative indicates that there was insufficient volume to complete a matrix spike or matrix spike duplicate sample in the prep batch associated with the project sample.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

No corrective actions necessary.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The results are unaffected; see the following sections for additional information.

Laboratory Report Date:

June 30, 2021

CS Site Name:

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

а.		ilyses p	citorinea/rep	forted as requested on elec.
	Yes⊠	No□	N/A	Comments:
b.	All applica	ble hole	ding times m	et?
	Yes⊠	No□	N/A	Comments:
c.	All soils re	ported	on a dry weig	ght basis?
	Yes□	No□	N/A	Comments:
Sc	oil samples w	vere not	included wi	th this work order.
d.	Are the rep the project		OQs less that	in the Cleanup Level or the minimum required detection level for
	Yes⊠	No□	N/A	Comments:
e.	Data qualit	y or usa	ability affecte	ed?

Data quality or usability are not affected.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square	Comments:	

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

June 30, 2021

CS Site Name:

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

N/A; see above	е.		
N/A; see above	2.		

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

v. Data quality or usability affected?

Comments:

No; see above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

Metals and/or inorganics were not analyzed as part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

June 30, 2021

CS Site Name:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

None; see above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

N/A; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability were not affected; see above.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes \square No \boxtimes N/A \square Comments:

The laboratory reports there was insufficient sample volume to perform a MS/MSD. Accuracy and precision for the project sample will be evaluated with the LCS/LCSD samples.

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

Metals and/or inorganics were not analyzed as part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes \square No \square N/A \boxtimes Comments:

See above.

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes \square No \square N/A \boxtimes Comments:

See above.

Laboratory Report Date:

June 30, 2021

CS Site Name:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

None; see above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

Data quality or usability is not affected.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

There were no IDA recovery failures associated with this work order.

iv. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

Laboratory Report Date:

June 30, 2021

CS Site Name:

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \square No \square N/A \boxtimes Comments:

PFAS are not volatile compounds. A trip blank is not required for the requested analysis.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \square No \square N/A \boxtimes Comments:

A trip blank is not required for the requested analysis.

iii. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

A trip blank is not required for the requested analysis.

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

A trip blank is not required for the requested analysis.

v. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \square No \square N/A \boxtimes Comments:

Only one project sample was submitted.

ii. Submitted blind to lab?

Yes \square No \square N/A \boxtimes Comments:

Only one project sample was submitted.

Laboratory Report Date:

June 30, 2021

CS Site Name:

 iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

YesNoN/AComments:

N/A; only one sample was submitted.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

N/A; see above.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

Reusable equipment was not used for sample collection. Therefore, decontamination or equipment blank samples were not required. A peri-pump was used to collect the requested analytes.

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

See above.

ii. If above LOQ or project specified objectives, what samples are affected?

Comments:

N/A; see above.

iii. Data quality or usability affected?

Comments:

No; see above.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

- a. Defined and appropriate?
 - YesNo $N/A \boxtimes$ Comments:

No additional flags or qualifiers are required.

Laboratory Report Date:

June 30, 2021

CS Site Name:

Solution Brief

EnviroFlux Passive Flux Meter

Groundwater sampling that provides the whole picture

The Challenge

While groundwater samples will provide localized contaminant concentration data, they provide no insight into whether (or how fast) the contaminants are migrating to other areas of the groundwater system.

The Solution

EnviroFlux Passive Flux Meters reveal the complexities of contaminant plume behavior, providing both contaminant mass flux and groundwater flow data.

The EnviroFlux Passive Flux Meter[®] (PFM) is a nylon mesh tube filled with a sorbent/ tracer mixture. The PFMs are inserted into groundwater monitoring wells where they passively intercept groundwater flow.

After a specified period of exposure to groundwater flow (usually one to four weeks), the PFM is removed from the well or boring. The sorbent is then extracted to quantify (a) the mass of all contaminants intercepted by the PFM and (b) the residual masses of all resident tracers.

The contaminant masses are used to calculate time-averaged contaminant fluxes, while residual resident tracer masses are used to calculate cumulative groundwater flux. Depth variations of both water and contaminant mass fluxes are measured by a single PFM by vertically segmenting the exposed sorbent mixture and analyzing for resident tracers and contaminants. Thus, the PFM provides a vertical profile of horizontal fluxes.

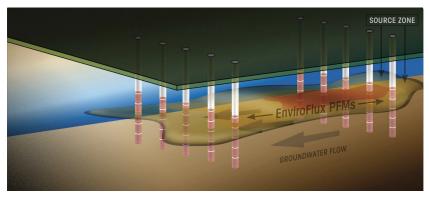


Figure 2) EnviroFlux PFMs are commonly used for site characterization

Key Benefits

- Green Technology No electrical power or pumping required.
- Simultaneous evaluation of both water and contaminant fluxes under natural gradient conditions.
- Cumulative measurement of contaminant flux, making the results less sensitive to daily fluctuations in groundwater flow or contaminant concentrations.
- Only two site visits required.
- Measurement of vertical variations in horizontal fluxes.
- Precise prior knowledge about local aquifer hydraulic conductivities not required.
- Wide range of contaminant analysis.
- USEPA approved technology.

Figure 1) Installing a PFM

Applications

Mass Flux Based Approach to Site Management:

Performance Assessment

Alternative measure of remedial objectives. Reduce mass flux to meet conditions acceptable for site management. Evaluate and compare the pre- and post-remediation mass flux values.

Flux-based Natural Attenuation Assessment (mass balance)

Mass flux is useful in assessing the effectiveness of the natural attenuation process. Contaminant mass reduction can be calculated using the differences in total contaminant mass flux across two cross-sections of the contaminant plume.

Remedial Design Optimization (target high mass flux zones)

In situ measurements of contaminant flux generate critical data which can be used to optimize the design and assess the performance of proposed remedial systems.

Risk Assessment

The concept of risk-based decision making involves using more realistic exposure scenarios and factors to evaluate the relative risks of contaminants to human health and the environment. Depending on these risks, appropriate action may include site closure, monitoring and data collection, active or passive remediation, or institutional controls. Mass flux measurements can be used on the front end to quantify this risk.

Site Characterization

Incorporate mass flux measurements into initial site characterization efforts to improve decision making when developing the overall site strategy.

Services

EnviroFlux offers our clients a turnkey mass flux analysis service. A typical PFM project includes the following steps:

Site characterization consultation

- Decide on the number of PFMs based on the monitoring well configuration and screen lengths (PFMs are typically 5 feet long).
- Determine the desired vertical resolution (for example one foot resolution).
- Provide EnviroFlux with well diameters, well construction material (i.e. PVC or stainless steel), and depth to the target well screens.
- · Provide EnviroFlux a list of contaminants of interest.

Installation, retrieval, and sampling of PFMs

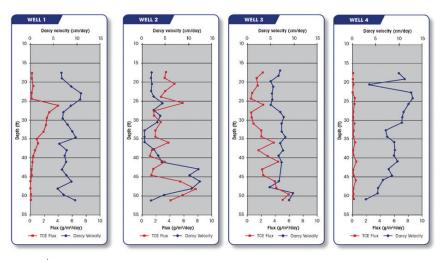
The PFMs are installed, retrieved, and sampled by the client. The PFMs are usually left in the monitoring wells from one to four weeks. In most cases the installation and retrieval/sampling of the PFMs each require only one-day site visits.

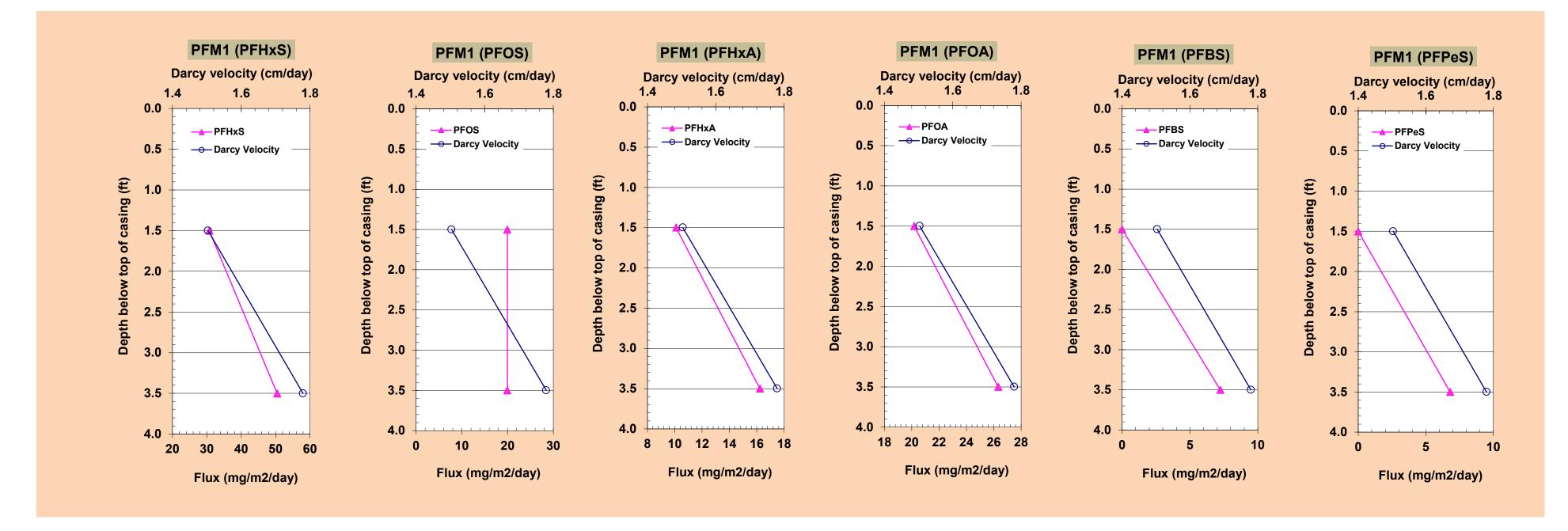
Lab analysis

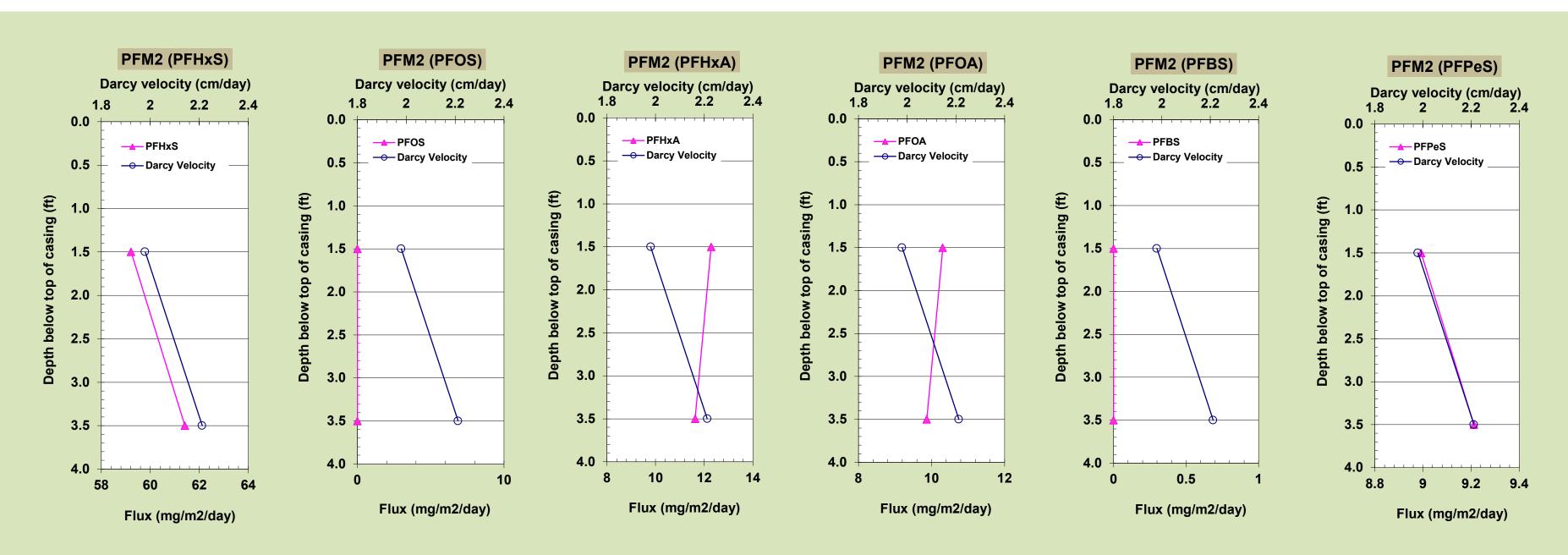
The samples are sent to EnviroFlux and analyzed to determine the concentration of contaminants absorbed into the PFM and the amount of tracers leached from the PFM.

Report

EnviroFlux provides a detailed data report indicating the mass flux results for all of the zones in which the PFMs were deployed.




Figure 3) PFM Contaminant Mass Flux Results


(ft)(cm/day)(ug/m^2/day)(ug/m^2/day)(ug/m^2/day)(ug/m^2/day)(ug/m^2/day)PFM1-03&041.51.530.720.010.120.20.00PFM1-01&023.51.850.420.016.226.37.20PFM2-03&041.52.059.20.012.310.30.00PFM2-01&023.52.261.40.011.69.90.00	Sample_ID	Depth below top of well casing	Darcy Velocity	PFHxS flux	PFOS flux	PFHxA flux	PFOA flux	PFBS flux	
PFM1-01&02 3.5 1.8 50.4 20.0 16.2 26.3 7.2 PFM2-03&04 1.5 2.0 59.2 0.0 12.3 10.3 0.0		(ft)	(cm/day)	(ug/m^2/day)	(ug/m^2/day)	(ug/m^2/day)	(ug/m^2/day)	(ug/m^2/day)	
PFM2-03&04 1.5 2.0 59.2 0.0 12.3 10.3 0.0	PFM1-03&04	1.5	1.5	30.7	20.0	10.1	20.2	0.0	
	PFM1-01&02	3.5	1.8	50.4	20.0	16.2	26.3	7.2	
PFM2-01&02 3.5 2.2 61.4 0.0 11.6 9.9 0.0	PFM2-03&04	1.5	2.0	59.2	0.0	12.3	10.3	0.0	
	PFM2-01&02	3.5	2.2	61.4	0.0	11.6	9.9	0.0	

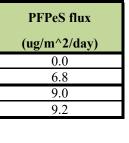

Table1. Summary of flux values for each well

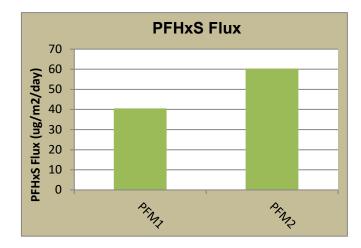
Table2. Summary of flux average contaminant concentration

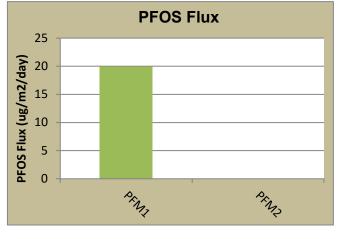
Sample_ID	Depth below top of well casing	Darcy Velocity	PFHxS	PFOS	PFHxA	PFOA	PFBS	
	(ft)	(cm/day)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	
PFM1-03&04	1.5	1.5	2042	1327	671	1342	0	
PFM1-01&02	3.5	1.8	2834	1121	912	1479	407	
PFM2-03&04	1.5	2.0	2992	0	620	521	0	
PFM2-01&02	3.5	2.2	2776	0	525	446	0	

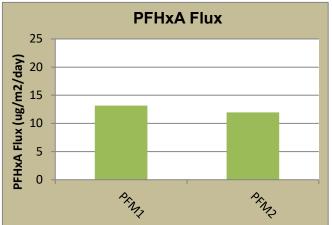
PFPeS	
(ng/L)	
0	
382	
454	
416	

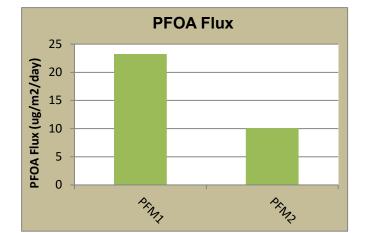
Perfluorohexane sulfonic acid (PFHxS) Perfluorooctane sulfonic acid (PFOS) Perfluorohexanoic acid (PFHxA) Perfluorooctanoic acid (PFOA) Perfluorobutane sulfonic acid (PFBS) Perfluoropentane sulfonic acid (PFPeS)

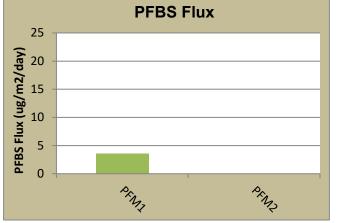
Table 3. Mass discharge per unit width for aquifer of each well

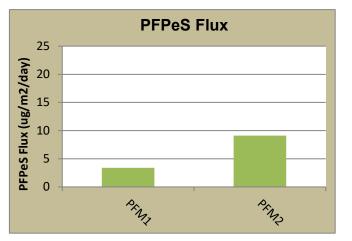

Well	Darcy Velocity	PFHxS	PFOS	PFHxA	PFOA	PFBS	PFPeS
	(cm/day)	(ug/m/day)	(ug/m/day)	(ug/m/day)	(ug/m/day)	(ug/m/day)	(ug/m/day)
PFM1	1.6	61.8	30.4	20.1	35.4	5.5	5.2
PFM2	2.1	91.9	0.0	18.2	15.4	0.0	13.9

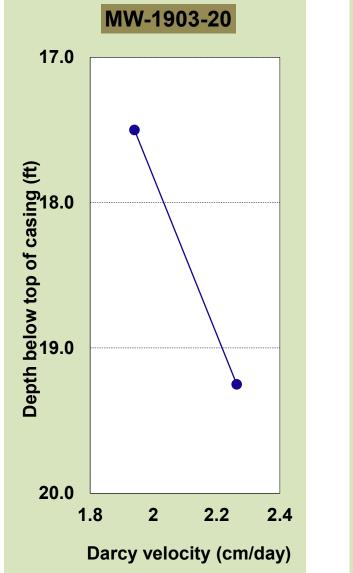

Table 4. Well average values of mass flux based on PFMs

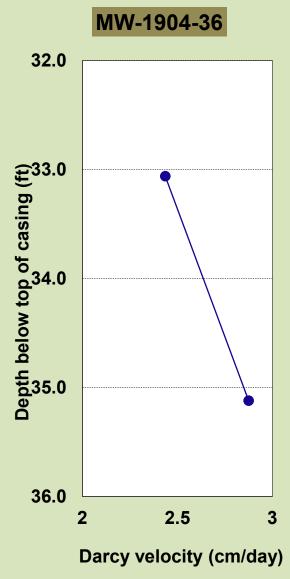

Well	Darcy Velocity	PFHxS flux	PFOS flux	PFHxA flux	PFOA flux	PFBS flux	PFPeS flux
	(cm/day)	(ug/m^2/day)	(ug/m^2/day)	(ug/m^2/day)	(ug/m^2/day)	(ug/m^2/day)	(ug/m^2/day)
PFM1	1.6	40.6	20.0	13.2	23.2	3.6	3.4
PFM2	2.1	60.3	0.0	12.0	10.1	0.0	9.1


Table 5. Flux average contaminant concentration


Well	Darcy Velocity	PFHxS	PFOS	PFHxA	PFOA	PFBS	PFPeS
	(cm/day)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)
PFM1	1.6	2438	1224	791	1410	203	191
PFM2	2.1	2884	0	573	483	0	435







Well_ID	Sample_ID	Approximate depth below top of well casing (distance from top of well casing to segment midpoint) (ft)	Darcy Velocity (cm/day)	PFM Sample Range (ft BGS)
MW 1002 20	PFM1-03	17.50	1.9	16.37' to 18.12'
MW-1903-20	PFM1-01	19.25	2.3	18.37' to 20.12'
MW-1904-36	PFM2-03	33.06	2.4	31.99' to 34.12'
IVI VV -1904-30	PFM2-01	35.12	2.9	34.32' to 35.92'

Appendix D Groundwater Gradient Documents

Table D-1: Groundwater Gradient Calculation Data

Well Name	Measurement Date	Top-of casing Elevation*	Donth to Water	Groundwater Elevation
	Measurement Date		Depth to Water	
MW-1903-20	10/00/0010	102.73	7.58	95.15
TWP-1	10/29/2019	104.17	8.82	95.35
TWP-2		104.70	9.18	95.52
MW-1903-20		102.73	7.31	95.42
TWP-1	12/15/2019	104.17	8.54	95.63
TWP-2		104.70	8.85	95.85
MW-1903-20		102.73	8.20	94.53
TWP-1	2/18/2020	104.17	9.30	94.87
TWP-2	1	104.70	9.70	95.00
MW-1903-20		102.73	8.53	94.20
TWP-1	3/12/2020	104.17	9.54	94.63
TWP-2	1	104.70	10.00	94.70
MW-1903-20		102.73	5.59	97.14
TWP-1	9/17/2020	104.17	6.59	97.58
TWP-2	1	104.70	7.09	97.61
MW-1903-20		102.73	6.80	95.93
TWP-1	12/22/2020	104.17	7.79	96.38
TWP-2]	104.70	8.34	96.36
MW-1903-20		102.73	7.90	94.83
TWP-1	3/16/2021	104.63	9.37	95.26
TWP-2		105.22	9.87	95.35

Notes:

Measurements are in feet.

*Elevations are relative to the height of the level. Base ground surface elevation is adjusted to 100 feet.

Appendix E PlumeStop® Documents Injection Information

CONTENTS

- Regenesis 2019 Summary Report
- PlumeStop® Injection Photo Log

Global Headquarters 1011 Calle Sombra San Clemente, CA 92673 Ph: (949) 366-8000 Fax: (949) 366-8090

December 5, 2019

Marcy Nadel Shannon and Wilson, Inc. 2355 Hill Road Fairbanks, AK 99709

SUBJECT: Application Summary Report for PlumeStop Pilot Testing at the Fairbanks International Airport Site (MW-1903-20)

Marcy,

Regenesis and GeoTek Alaska, Inc. (GeoTek) have recently completed a pilot scale in-situ injection application of PlumeStop[®] Liquid Activated Carbon[™] (PlumeStop) at the Fairbanks International Airport in the area directly surrounding monitoring well MW-1903-20. PlumeStop consists of activated carbon particles milled to 1 to 2 micrometers in size, approximately the same size as a red blood cell. The particle size and the proprietary surface chemistry allow the carbon particles to be suspended as a colloid and flow as a liquid, allowing the PlumeStop to easily distribute and attach to soil particles once contacted. Activated carbon has been demonstrated to be an effective remediation technology to remove PFAS species from groundwater; however, until recently these implementations have used above ground water treatment facilities with granular activated carbon (GAC) vessels that require frequent carbon change outs and expensive operation and maintenance costs. Regenesis developed PlumeStop as an innovative technology designed to use the proven technology of GAC filtration and emplace it *in-situ* with direct contact to contaminant mass. The result is that the contaminant residence time in carbon is significantly longer with in-situ contact than with above ground GAC vessels, effectively increasing the remediation efficiency of carbon and allowing for removal of contaminant species to very low levels. The goal of this pilot test was to mitigate PFAS species transport in groundwater by sorption to activated carbon, effectively locking the PFAS mass in place for a period of up to five years post-application.

Prior to Regenesis and GeoTek mobilizing to the site, several tasks were completed by Shannon and Wilson, including monitoring well installation and groundwater sampling. Shannon and Wilson and GeoTek installed MW-1903-20 in July 2019 as a two-inch PVC monitoring well screened in the target treatment zone (TTZ) from 15 to 20 feet below ground surface (ft bgs). The soil in the TTZ ranges from a poorly graded sand with gravel to a poorly graded gravel with sand, both with low clay and silt content (<10%). The August 2019 baseline groundwater sampling event from the pilot test monitoring well MW-1903-20 had detections of nine PFAS species (PFOS, PFOA, PFHxS, PFHxA, PFHpS, PFHpA, PFBS, PFBA, and PFPeA) with the sum total of PFOS and PFOA exceeding the EPA Lifetime Health Advisory Limit of 70 ng/L. Shannon and Wilson deployed a passive flux meter (PFM) into well MW-1903-20 in September 2019 to measure Darcy velocity and PFAS (PFOA, PFDS, PFBS, PFPeS, PFHxA, and PFHxS) mass flux at two vertical intervals (16.4 to 18.1 ft bgs and 18.4 to 20.1 ft bgs). Groundwater seepage velocity is estimated based on the division of the resulting Darcy velocity by the estimated effective porosity of the TTZ soil (effective)

Global Headquarters 1011 Calle Sombra San Clemente, CA 92673 Ph: (949) 366-8000 Fax: (949) 366-8090

porosity in this case defined as the volume of interconnected pore space present in the principal flux zones within a unit volume of the TTZ).

Seepage velocity and mass flux are critical measurements required to design accurate carbon loading rates. Regenesis used the internally developed modeling software PlumeForce[™] to determine the total carbon needed to capture the PFAS species present at their respective flux rates and relative isotherm values (i.e., affinity for sorption to carbon).

Regenesis and GeoTek mobilized to the site on October 28, 2019 to conduct Design Verification Testing (DVT) and a PlumeStop injection. The Regenesis DVT program is standard for all PlumeStop injection programs and is defined as a series of remedial conditions tests used to evaluate the injectability and distribution of PlumeStop. The primary objectives of the DVT were to define local groundwater flow direction and to confirm the previous injection volume estimations were sufficient to achieve relatively homogenous distribution (vertically and laterally) across the TTZ. GeoTek, under direction from Regenesis, installed two temporary monitoring wells upgradient of well MW-1903-20. The two temporary wells were installed by blind drilling 2.25" probe rods (i.e., no samples collected) and installing within the rods one-inch PVC wells with ten feet of slotted screen from 4 to 14 ft bgs. Pea gravel (3/8") was filled in the well annulus to the surface to provide a filter pack around the well screen. The wells were then developed by purging using a peristaltic pump. After the temporary wells were installed and allowed to sit overnight, Regenesis surveyed the relative top of casing elevations between the three wells TW1, TW2, and MW-1903-20 and measured depth to groundwater in each well in order to establish a hydraulic gradient and flow direction.

After the local groundwater flow direction was determined, Regenesis and GeoTek performed injection testing to assess PlumeStop distribution using the original (pre-field testing) PlumeStop design estimations. Injection was completed by advancing a two-foot multi-port retractable steel injection tool and injecting in one or two-foot lifts ("bottom-up"). GeoTek advanced each injection point using a Geoprobe® 6620T direct push rig. Two injection points were completed at 5-foot center spacings at a vertical depth of between 15 to 20 ft bgs using a 26 gallons/foot (gal/ft) volumetric dosing. A pre- and post-injection soil core was collected at a distance approximately one half the distance between the two completed injection points. Results indicated no PlumeStop was present in the post-injection soil core. The PlumeStop volume was subsequently then increased to 50 gal/ft

TECHNICAL NOTE: For discussion purposes where PlumeStop volume was increased, additional mix water was added to each interval while maintaining the same total pounds of carbon (active ingredient) applied. The net effect of the volume increase is a decrease in the concentration of PlumeStop injected. See Table 1 for the PlumeStop carbon injection concentrations applied per injection point. At a volume of 50 gal/ft PlumeStop was observed in the bottom third of the soil core. The application volume was increased to 100 gal/ft. The associated confirmation soil core indicated that PlumeStop was observed homogenously throughout the core when applied at 5-foot on center spacings using 100 gal/ft. The final design for the

Global Headquarters 1011 Calle Sombra San Clemente, CA 92673 Ph: (949) 366-8000 Fax: (949) 366-8090

remainder of the injection points used a conservative 125 gal/ft dosing, or 625 gallons per point (this was further modified to a total injection volume of 650 gallons for simpler batch mixing). A visual presentation of the DVT data collected is presented in Appendix A.

Certified PFAS-free mix water was sourced for the project and routine deliveries of the water were made from a supplier throughout the project. Several injection pumps were evaluated for delivery of the various PlumeStop volumes into the TTZ. These included an air powered diaphragm pump, two stator pumps (Moyno 2L4 and Moyno L8), a centrifugal pump, and a Hydra-Cell H25 pump. The hydraulically powered Moyno 2L4 pump was eventually selected as the main injection pump due to its reliability in low temperature environments and ability to control injection flow rates and pressures. The average injection flow rates and pressures using the Moyno 2L4 pump was 6 gallons per minute (gpm) and 50 pounds per square inch (psi). Injection of PlumeStop was accomplished using one or two injection points at a time. However, most injection points were applied in a single injection point configuration. An injection log documenting the observed application flow rates and pressures for each injection point is presented in Table 1 (attached). The orientation and approximate injection point locations are shown in Figure 1 below.

Approximate Locations of Direct Push Injection Points

While assessing the Hydra-Cell H25 injection pump, an undetermined piece of debris or ice was entrained in the system and punctured the main gasket on the pump. The resulting hole caused a leak of up to but not more than 2.0 Liters of pump oil lubricant (10W-40 motor oil) to be inadvertently mixed with the PlumeStop batch and thus injected in the subsurface. Low oil level in the pump was discovered as part of a routine oil level check at the end of the day. It should be noted that that knowledge of the injection oil entrained PlumeStop was not realized until the following day.

Global Headquarters 1011 Calle Sombra San Clemente, CA 92673 Ph: (949) 366-8000 Fax: (949) 366-8090

Three injection point locations were applied during the period of oil loss/entrainment, these were IP-12 (15 to 17 ft bgs), IP-13 (15 to 17 ft bgs), IP-14 (17 to 20 ft bgs). Injection points IP-13 and IP-14 received most of the volume on that day and groundwater samples were collected in the immediate area around those injection points. Three groundwater samples were collected to assess the total dissolved phase petroleum hydrocarbon concentrations that might be present. Two grab groundwater samples (GW1 and GW2) were collected in the injection area using a 3-ft SP-16 groundwater sampler (15 to 18 ft bgs) and an additional groundwater sample was collected from MW-1903-20. See the figure above for approximate locations of the hydro-punch grab groundwater samples. Groundwater samples mixed with PlumeStop typically cannot be analyzed by a commercial laboratory due to the difficulty in removing the carbon from solution. Thus, groundwater samples were shipped to the Regenesis corporate laboratory to be pretreated by centrifuging the samples to settle out the carbon. The resulting PlumeStop free groundwater samples was sent to a commercial laboratory for TPH analysis. In an effort to adsorb the TPH mass inadvertently co-applied with Plumestop, Regenesis and Geotek injected an additional 800 pounds of PlumeStop-S (this is a PlumeStop formulation with a higher concentration of active ingredient) into four injection points (IP-17, IP-18, IP-19, and IP-20) located in the immediate vicinity of the performance monitoring well. The remainder of the PlumeStop injection was completed using the hydraulically controlled Moyno 2L4 pump. All samples ground water samples taken from both hydropunch and monitoring wells have come back non-detect for TPH.

This pilot not only serves as test of treatment and mitigation of PFAS at the Fairbanks International Airport, it also serves as a logistics benchmark for future work on the site. As we assess the data on this site, we look upon the pilot test for lessons learned. These lessons learned include the capacity of aquifer's ability to accept rapid application rates and the need to apply larger volumes in order to achieve adequate and reliable distribution. This also applies to the project's injection set up and selection in terms of pump size and types, manifolds configurations, tankage, and lines. For a full-scale application, Regenesis and GeoTek have been in contact to design a system to more rapidly inject PlumeStop and safeguard the potential for equipment malfunctions. By making modifications to the systems from the lessons learned in the Pilot Testing program we expect to increase full-scale application production rates by a factor of 3-4x.

Regenesis greatly appreciates the opportunity to work at this site with Shannon and Wilson. Regenesis will be available to assist with any questions or concerns.

Sincerely,

Andrew Punsoni Northwest Region Technical Manager REGENESIS

< a Ser

Craig Sandefur VP Applications Development REGENESIS

Global Headquarters 1011 Calle Sombra San Clemente, CA 92673 Ph: (949) 366-8000 Fax: (949) 366-8090

APPENDICES

Appendix A – Design Verification Testing Summary Table 1 – Injection Log Attachment: PFM Spec Sheet

MW-1903-20 Soil Core Collected between IP-1 and IP-2

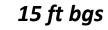
26 gal/ft

IP-1, IP-2, and MW-1903-20 are located 5 ft apart in a triangle formation. Pre- and post-injection soil cores were co-located and collected directly between IP-1 and IP-2.

Pre-Injection

Post-Injection at 26 gal/ft

MW-1903-20 Soil Core Collected between IP-1 and IP-2



26 gal/ft

Left = Pre-Injection Right = Post-Injection

Groundwater sample collected from well MW-1903-20

18 ft bgs

20 ft bgs

MW-1903-20 Soil Core Collected between 2.5 ft away from IP-3 50 gal/ft

40 mL VOAs filled with soil collected at 15, 18, and 20 ft bgs

MW-1903-20 Soil Core Collected between 2.5 ft away from IP-4 100 gal/ft

40 mL VOAs filled with soil collected at 15 and 18 ft bgs

MW-1903-20 Groundwater Sample

Groundwater sample collected from MW-1903-20 with observed PlumeStop influence after injection at IP-1 to IP-7 (2,310 total gallons applied)

TABLE 1 FAIRBANKS INTERNATIONAL AIRPORT PFAS PILOT TEST PLUMESTOP INJECTION LOG MW-1903-20 PILOT TEST AREA

Injection	Date		Injection Depth Injection (ft bgs) Pressure (psi)	Injustion	Flow Parts	Volume	e of PlumeStop I	njected	Total Gallons Per	PlumeStop Injection Concentration
Point		Date Time ""		Flow Rate (gpm)	Beginning Flow Meter (gal)	Ending Flow Meter (gal)	Gallons Injected Per Interval	Location	(ppm)	
		15:20	19-20	110	4.50	0	26	26		
1	10/29/2019	15:40 15:48	17-19 15-17	60 75	8.70 9.00	26 78	78 130	52 52	130	16,500
2	10/29/2019	14:30 14:45	19-20 17-19	80 60	7.00 6.60	0 26	26 78	26 52	130	16,500
		14:58	15-17	60	7.70	78	130	52		
		10:00	19-20	80	7.00	0	50	50		
3	10/30/2019	10:30 11:00	17-19 15-17	75 60	6.00 9.00	50 150	150 250	100 100	250	8,500
		11.00		60	5.00	150	250	100		
4	10/30/2019	14:20 15:00	19-20 17-19	65 65	5.00 5.50	0 100	100 300	100 200	500	4,300
	,,	15:45	15-17	40	5.00	300	500	200		,,
	10/31/2019	15:30	19-20	45	7.00	0	100	100		
5		15:45	13-20	40	6.50	100	300	200	600	3,600
	11/1/2019	16:00	15-17	40	7.00	300	600	300		
		14:00	19-20	100	6.00	0	50	50		
6	11/2/2019	14:30	17-19	100	6.00	50	300	250	600	3,600
		15:00	15-17	100	6.00	300	600	300		
	11/2/2019	15:00	19-20	65	6.50	0	50	50		
7	11/3/2019	10:00	17-19	75	5.50	50	300	250	600	3,600
		11:00	15-17	25	7.00	300	600	300		
		13:00	19-20	65	6.00	0	125	125		
8	11/6/2019	14:00 15:15	17-19 15-17	45 25	6.00 7.00	125 375	375 625	250 250	625	3,450
		15.15	1517	25	7.00	575	025	250		
9	11/6/2010	16:00	19-20	45	6.00	0	125	125	625	2.450
9	11/6/2019	17:00 18:00	17-20 15-17	45 30	7.00	125 375	375 625	250 250	025	3,450
						1				1
10	11/7/2019	11:45 14:00	19-20 17-19	40 40	6.50 5.00	0 125	125 375	125 250	625 3,450	3 450
10	11,7,2013	14:00	15-17	40	5.00	375	625	250		5,150
		10.15		50	4.00		105	105		
11	11/8/2019	10:45 12:30	19-20 17-19	50 40	4.00	0 125	125 375	125 250	625	3,450
		14:50	15-17	40	4.00	375	625	250		
	11/0/0010	13:30	19-20	55	3.40	0	125	125		
12	11/9/2019	14:30	17-19	40	5.00	125	350	225	400	3,325
	11/10/2019	10:00	15-17	40	5.00	350	400	50		
		14:30	19-20	35	9.50	0	125	125		
13	11/9/2019	15:00	17-19	35	9.50	125	350	225	650	3,325
	11/10/2019	15:30 12:00	15-17 15-17	25 20	10.00 7.00	350 430	430 650	80 220		
	11/10/2013									
14	11/10/2019	12:30	19-20	45	7.00	0	125	125	650	3,325
14	11/11/2019	15:00 12:00	17-19 15-17	50 65	7.00	125 350	350 650	225 300	050	3,323
	11/11/2010	12:20	10.30		7.00			135		·
15	11/11/2019	12:30 12:00	19-20 17-19	50 45	7.00	0 125	125 350	125 225	650	3,325
	11/12/2019	14:00	15-17	45	6.00	350	650	300		
		12:30	19-20	50	6.50	0	125	125		
16	11/12/2019	14:00	17-19	50	6.00	125	350	225	650	3,325
		15:30	15-17	50	6.00	350	650	300		
		11:40	19-20	50	5.50	0	8	8		
17	11/13/2019	12:00	17-19	50	4.50	8	24	16	40	83,000
		12:20	15-17	40	4.00	24	40	16		
	11/13/2019	12:40	19-20	55	4.50	0	8	8		
18		13:00 13:20	17-19 15-17	50 40	5.00 4.50	8 24	24 40	16 16	40	83,000
		13.20	13-17	40	4.50			10		l
19	11/12/2010	13:40	19-20	50	5.00	0	8	8	40	83,000
19	11/13/2019	15:00 15:20	17-19 15-17	50 50	4.50 4.50	8 24	24 40	16 16	40	63,000
26	11/13/2019	15:30 15:45	19-20 17-19	50 45	5.00 5.00	0 8	8 24	8 16	40	83,000
20			1/-19	45	5.00	ŏ	24	10	10	00,000

Total Gallons	Total PlumeStop Applied
8,470	4,000 lbs PlumeStop Regular 1,600 lbs PlumeStop Stout

Solution Brief

EnviroFlux Passive Flux Meter

Groundwater sampling that provides the whole picture

The Challenge

While groundwater samples will provide localized contaminant concentration data, they provide no insight into whether (or how fast) the contaminants are migrating to other areas of the groundwater system.

The Solution

EnviroFlux Passive Flux Meters reveal the complexities of contaminant plume behavior, providing both contaminant mass flux and groundwater flow data.

The EnviroFlux Passive Flux Meter[®] (PFM) is a nylon mesh tube filled with a sorbent/ tracer mixture. The PFMs are inserted into groundwater monitoring wells where they passively intercept groundwater flow.

After a specified period of exposure to groundwater flow (usually one to four weeks), the PFM is removed from the well or boring. The sorbent is then extracted to quantify (a) the mass of all contaminants intercepted by the PFM and (b) the residual masses of all resident tracers.

The contaminant masses are used to calculate time-averaged contaminant fluxes, while residual resident tracer masses are used to calculate cumulative groundwater flux. Depth variations of both water and contaminant mass fluxes are measured by a single PFM by vertically segmenting the exposed sorbent mixture and analyzing for resident tracers and contaminants. Thus, the PFM provides a vertical profile of horizontal fluxes.

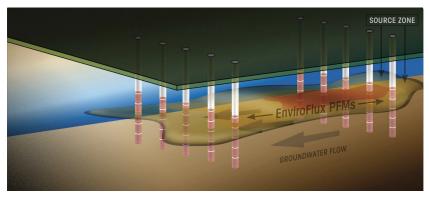


Figure 2) EnviroFlux PFMs are commonly used for site characterization

Key Benefits

- Green Technology No electrical power or pumping required.
- Simultaneous evaluation of both water and contaminant fluxes under natural gradient conditions.
- Cumulative measurement of contaminant flux, making the results less sensitive to daily fluctuations in groundwater flow or contaminant concentrations.
- Only two site visits required.
- Measurement of vertical variations in horizontal fluxes.
- Precise prior knowledge about local aquifer hydraulic conductivities not required.
- Wide range of contaminant analysis.
- USEPA approved technology.

Figure 1) Installing a PFM

Applications

Mass Flux Based Approach to Site Management:

Performance Assessment

Alternative measure of remedial objectives. Reduce mass flux to meet conditions acceptable for site management. Evaluate and compare the pre- and post-remediation mass flux values.

Flux-based Natural Attenuation Assessment (mass balance)

Mass flux is useful in assessing the effectiveness of the natural attenuation process. Contaminant mass reduction can be calculated using the differences in total contaminant mass flux across two cross-sections of the contaminant plume.

Remedial Design Optimization (target high mass flux zones)

In situ measurements of contaminant flux generate critical data which can be used to optimize the design and assess the performance of proposed remedial systems.

Risk Assessment

The concept of risk-based decision making involves using more realistic exposure scenarios and factors to evaluate the relative risks of contaminants to human health and the environment. Depending on these risks, appropriate action may include site closure, monitoring and data collection, active or passive remediation, or institutional controls. Mass flux measurements can be used on the front end to quantify this risk.

Site Characterization

Incorporate mass flux measurements into initial site characterization efforts to improve decision making when developing the overall site strategy.

Services

EnviroFlux offers our clients a turnkey mass flux analysis service. A typical PFM project includes the following steps:

Site characterization consultation

- Decide on the number of PFMs based on the monitoring well configuration and screen lengths (PFMs are typically 5 feet long).
- Determine the desired vertical resolution (for example one foot resolution).
- Provide EnviroFlux with well diameters, well construction material (i.e. PVC or stainless steel), and depth to the target well screens.
- · Provide EnviroFlux a list of contaminants of interest.

Installation, retrieval, and sampling of PFMs

The PFMs are installed, retrieved, and sampled by the client. The PFMs are usually left in the monitoring wells from one to four weeks. In most cases the installation and retrieval/sampling of the PFMs each require only one-day site visits.

Lab analysis

The samples are sent to EnviroFlux and analyzed to determine the concentration of contaminants absorbed into the PFM and the amount of tracers leached from the PFM.

Report

EnviroFlux provides a detailed data report indicating the mass flux results for all of the zones in which the PFMs were deployed.

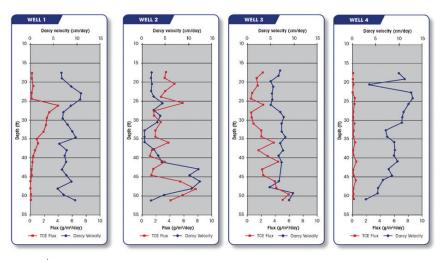


Figure 3) PFM Contaminant Mass Flux Results

SHANNON & WILSON, INC.

Fairbanks International Airport PlumeStop Pilot Study Photo Report

Photo 1:GeoTek advancing an injection well, October 29, 2019



Photo 2: Injection of PlumeStop near MW-1903-20, October 20, 2019

Photo 3: Injection Pump 1, diaphragm pump. October 29, 2019

Photo 4: Injection pump 2, Moyno Pump. November 1, 2019

Photo 5: Injection pump 3, GeoTek pump. November 2, 2019

Photo 6: Injection pump 4, Hydracel pump. November 8, 2019

WILSON, INC.

Fairbanks International Airport PlumeStop Pilot Study Photo Report

Photo 7: Liquid PlumeStop solution

Photo 8:PlumeStop injection November 4, 2019

APPENDIX F: PERMITS AND APPROVAL DOCUMENTATION

Appendix F Permits and Approval Documentation

CONTENTS

- EPA Injection Permit Application
- FAA 7460-1 Determination Letter
- DEC Approval Letter

April 16, 2019

U.S. Environmental Protection Agency, Region 10 Underground Injection Control Program 1200 Sixth Ave., Suite 155, OCE-101 Seattle, WA 98101

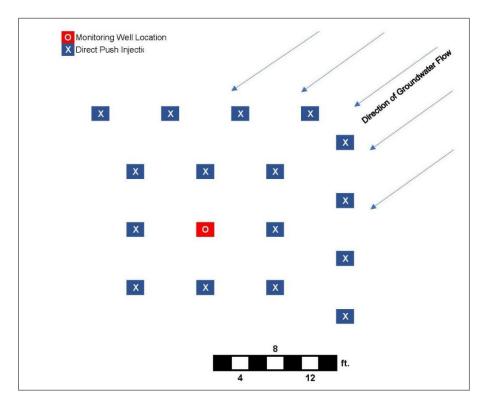
Attn: Mr. Derek Schruhl, EPA Region 10

RE: FAIRBANKS INTERNATIONAL AIRPORT CLASS V INJECTION WELL PERMIT APPLICATION

We are pleased to provide the following information regarding a planned pilot test of PlumeStop® and/or PlumeStop S® liquid activated carbon near two groundwater monitoring wells (MWs) within the Fairbanks International Airport (FAI) per- and polyfluoroalkyl substances (PFAS) plume. Implementation of this pilot test will require the installation of the aforementioned MWs and the use of temporary well points (TWPs) to inject the PlumeStop® slurry at designated locations adjacent to, and upgradient of, the MWs. If the direct injection method proves insufficient, the MWs will be used as alternative injection points.

As PlumeStop® is non-hazardous and would be injected directly into groundwater, we understand the planned implementation falls under the regulation CFR title 40 volume 22 section 144.12 for Class V injection wells. Shannon & Wilson is requesting Environmental Protection Agency (EPA) approval to proceed with the pilot test based on the following parameters.

MONITORING WELL INSTALLATION


One onsite and one offsite study location are planned for this pilot test, tentatively scheduled for June 2019. The onsite well will be located off Airport Industrial Road near the northwestern corner of the developed airport property, and installed to a depth of 20 feet below ground surface (bgs). The offsite well will be located off King Road and installed to a depth of 35 feet bgs. The pilot study locations are shown in Figure 1.

We will install the two groundwater MWs with direct-push Macro-Core tooling to collect subsurface soil samples from the borings. This advances 5-foot-long polyvinyl chloride (PVC)-lined samplers for continuous soil sampling. We will not use drilling aids such as bentonite, other clay-based agents, or other foreign matter capable of affecting the characteristics of the groundwater. During construction of the wells, precautions shall be used to prevent tampering with the well or entrance of foreign material.

MW casing/riser pipe shall be new, 2- inch nominal internal diameter, schedule 40 flushjoint threaded ASTM D 1785 PVC pipe. This pipe shall also meet the requirements of NSF ANSI/NSF Std 14. A PVC cap that threads or slips onto the top of the well casing shall be provided. The filter pack shall consist of clean, washed, rounded to sub-rounded siliceous material free from calcareous grains or material. A schematic showing MW construction details is included in Figure 2.

TEMPORARY INJECTION WELL INSTALLATION

Injection points for the PlumeStop® slurry will be advanced via a GeoProbe drill using a direct-push installation method. The GeoProbe will insert a ½ to 1-inch diameter slotted steel casing into the ground such that the screened interval is within the water table. The temporary injection points will be distributed in approximately 8-foot center spacing intervals aligned upgradient and perpendicular to the direction of groundwater flow, as shown below.

We anticipate installing 12 to 17 injection points at each pilot test location. Depending on the outcome, the MW may be used as an alternative injection point.

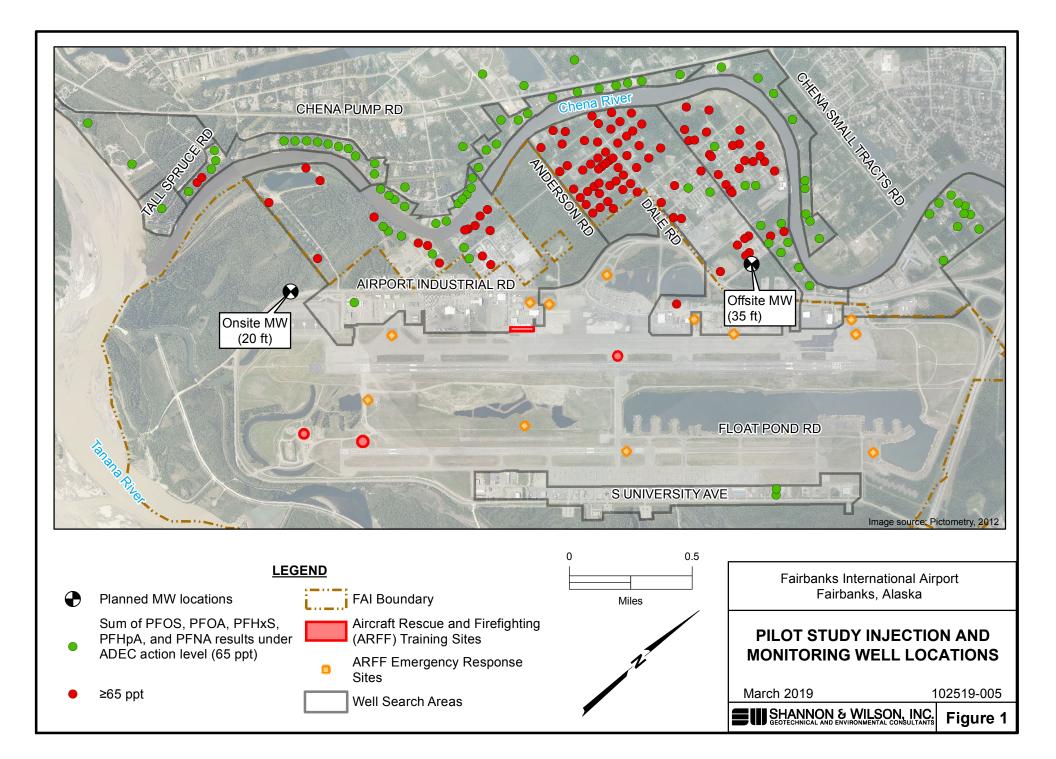
PLUMESTOP® SLURRY OVERVIEW

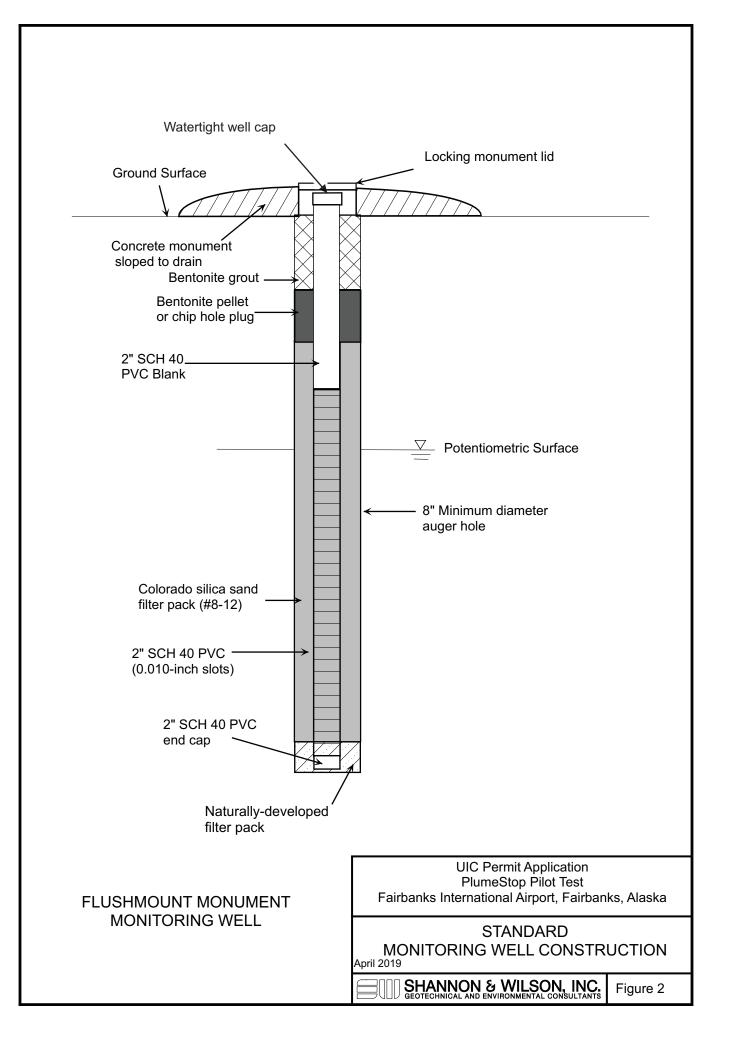
The PlumeStop® liquid activated carbon slurry consists of less-than-two-micron activated carbon particles forming a colloidal solution in water. This solution is then injected into the water table, such that dispersion occurs under normal hydrogeologic conditions. We plan to use either PlumeStop® and/or PlumeStop S® liquid activated carbon, product specifications for both are attached.

We anticipate that roughly 4,400 pounds of PlumeStop® suspended in 6,400 gallons of water will be injected at each of the pilot test locations. The PlumeStop® will be injected via a bottom-up approach utilizing roughly 75 gallons per vertical foot.

DURATION OF INJECTION WELL OPERATION

We anticipate the injection of PlumeStop® to be accomplished over a span of five to eight days. The temporary injection wells will be decommissioned at the completion of injection activities. The temporary metal casing will be withdrawn from the injection point and the hole will be backfilled from the bottom up with bentonite chips or pellets. The bentonite plug will serve to prevent surface-water infiltration. The MWs will remain in place and be the subject of repeated sampling events throughout the year to assess groundwater conditions.


CONCLUSION


Shannon & Wilson is targeting the early summer season for the installation of MWs and temporary well points for PlumeStop® slurry injection. We do not anticipate changes in the groundwater flow direction as a result of this pilot test. Please feel free to contact us directly if you have additional questions regarding this proposed study.

Sincerely,

Adam Wyborny, EIT Environmental Engineering Staff

Enc. Figure 1, Pilot Study Injection and Monitoring Well Locations Figure 2, Standard Monitoring Construction PlumeStop® product specifications, SDS PlumeStop S® product specifications, SDS

SAFETY DATA SHEET

1. Identification

Product identifier	PlumeSTOP®
Other means of identification	None.
Recommended use	Soil and Groundwater Remediation.
Recommended restrictions	None known.
Manufacturer/Importer/Supplier/	Distributor information
Company Name	Regenesis
Address	1011 Calle Sombra
	San Clemente, CA 92673
Telephone	949-366-8000
E-mail	CustomerService@regenesis.com
Emergency phone number	CHEMTREC [®] at 1-800-424-9300 (International)

2. Hazard(s) identification

Physical hazards	Not classified.
Health hazards	Not classified.
OSHA defined hazards	Not classified.
Label elements	
Hazard symbol	None.
Signal word	None.
Hazard statement	The mixture does not meet the criteria for classification.
Precautionary statement	
Prevention	Observe good industrial hygiene practices.
Response	Wash hands after handling.
Storage	Store away from incompatible materials.
Disposal	Dispose of waste and residues in accordance with local authority requirements.
Hazard(s) not otherwise classified (HNOC)	None known.

3. Composition/information on ingredients

	CAS number	%
	7732-18-5	>75
5	7440-44-0	<25
		≤2
All concentrations are in percent by weig	ght unless otherwise indicated.	a
Move to fresh air. Call a physician if symp	otoms develop or persist.	
Wash off with soap and water. Get medic	cal attention if irritation develops and	persists.
Rinse with water. Get medical attention i	f irritation develops and persists.	
Rinse mouth. Get medical attention if syr	nptoms occur.	
Direct contact with eyes may cause temp	porary irritation.	
	Move to fresh air. Call a physician if symp Wash off with soap and water. Get medic Rinse with water. Get medical attention i Rinse mouth. Get medical attention if syn	7732-18-5

PlumeSTOP®

Indication of immediate medical attention and special treatment needed	Treat symptomatically.
General information	If you feel unwell, seek medical advice (show the label where possible). Show this safety data sheet to the doctor in attendance.
5. Fire-fighting measures	
Suitable extinguishing media	Carbon dioxide, alcohol-resistant foam, dry chemical, water spray, or water fog.
Unsuitable extinguishing media	None known.
Specific hazards arising from the chemical	During fire, gases hazardous to health may be formed. Combustion products may include: carbon monoxide, carbon dioxide, sodium oxides, metal oxides.
Special protective equipment and precautions for firefighters	Use protective equipment appropriate for surrounding materials.
Fire fighting equipment/instructions	Move containers from fire area if you can do so without risk.
Specific methods	Use standard firefighting procedures and consider the hazards of other involved materials. Use water spray to keep fire-exposed containers cool.
General fire hazards	This material will not burn until the water has evaporated. Residue can burn. When dry may form combustible dust concentrations in air.
6. Accidental release mea	sures
Personal precautions, protective equipment and emergency procedures	Keep unnecessary personnel away. Avoid contact with spilled material. For personal protection, see section 8 of the SDS.
Methods and materials for	This product is miscible in water.
containment and cleaning up	Large Spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water.
	Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.
Environmental precautions	Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS. Avoid discharge into drains, water courses or onto the ground.
7. Handling and storage	
Precautions for safe handling	Avoid contact with skin and eyes. Avoid prolonged exposure. Observe good industrial hygiene practices. Wash thoroughly after handling. Wear appropriate personal protective equipment (See Section 8).
Conditions for safe storage, including any incompatibilities	Store in original tightly closed container. Store away from incompatible materials (see Section 10 of the SDS). Protect from freezing.

8. Exposure controls/personal protection

Occupational exposure limits

US. OSHA Table Z-3 (29 CFR 1910.1000)

Components	Туре	Value	Form	
Colloidal activated carbon	TWA	5 mg/m3	Respirable fraction.	
≤2.5 μm (CAS 7440-44-0)		15 mg/m3	Total dust.	
US. NIOSH: Pocket Guide	to Chemical Hazards			
Components	Туре	Value	Form	
Colloidal activated carbon ≤2.5 µm (CAS 7440-44-0)	TWA	2.5 mg/m3	Respirable.	
ological limit values	No biological exposure limits noted for the ingredient(s).			
propriate engineering ntrols	Good general ventilation (typically 1 should be matched to conditions. If or other engineering controls to mai exposure limits have not been estab	applicable, use process enclosu ntain airborne levels below reco	rres, local exhaust ventilation, mmended exposure limits. If	
umeSTOP®			SDS U	

Individual protection measures, such as personal protective equipment

Eye/face protection	Wear approved chemical safety goggles.		
Skin protection			
Hand protection	Rubber, neoprene or PVC gloves are recommended. Wash hands after handling.		
Other	Avoid contact with the skin. Wear suitable protective clothing.		
Respiratory protection	Not normally needed. In case of insufficient ventilation, wear suitable respiratory equipment. If engineering controls do not maintain airborne concentrations below recommended exposure limits (where applicable) or to an acceptable level (in countries where exposure limits have not been established), an approved respirator must be worn.		
Thermal hazards	Wear appropriate thermal protective clothing, when necessary.		
General hygiene considerations	Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants.		

9. Physical and chemical properties

Appearance	
Physical state	Liquid.
Form	Aqueous suspension.
Color	Black.
Odor	Odorless.
Odor threshold	Not available.
рН	8 - 10
Melting point/freezing point	Not available.
Initial boiling point and boiling range	Not available.
Flash point	Not flammable.
Evaporation rate	Not available.
Flammability (solid, gas)	Not applicable.
Upper/lower flammability or exp	losive limits
Flammability limit - lower (%)	Not available.
Flammability limit - upper (%)	Not available.
Explosive limit - lower (%)	Not available.
Explosive limit - upper (%)	Not available.
Vapor pressure	Not available.
Vapor density	Not available.
Relative density	1 - 1.2
Solubility(ies)	
Solubility (water)	Miscible
Partition coefficient (n-octanol/water)	Not available.
Auto-ignition temperature	Not available.
Decomposition temperature	Not available.
Viscosity	Not available.
10. Stability and reactivity	
Reactivity	The product is stable and non-reactive under normal conditions of use, storage and transport.
Chemical stability	Material is stable under normal conditions.
Possibility of hazardous reactions	No dangerous reaction known under conditions of normal use.
Conditions to avoid	Contact with incompatible materials. Keep from freezing.
Incompatible materials	Strong oxidizing agents. Water reactive materials.

11. Toxicological information

Information on likely routes of exposure

Inhalation	Prolonged inhalation may be harmful.		
Skin contact	Prolonged or repeated skin contact may result in minor irritation.		
Eye contact	Direct contact with eyes may cause temporary irritation.		
Ingestion	Expected to be a low ingestion hazard.		
Symptoms related to the physical, chemical and toxicological characteristics	Direct contact with eyes may cause temporary irritation.		

Information on toxicological effects

Acute toxicity Not expected to be acutely toxic.

Components	Species	Test Results				
Colloidal activated carbon ≤2.5 µ	m (CAS 7440-44-0)					
Acute						
Inhalation						
LC50	Rat	> 8500 mg/m³, air				
Oral						
LD50	Rat	> 2000 mg/kg, (Female)				
Skin corrosion/irritation	Prolonged skin contact may	Prolonged skin contact may cause temporary irritation.				
Serious eye damage/eye irritation	Direct contact with eyes may cause temporary irritation.					
Respiratory or skin sensitization	on					
Respiratory sensitization	Not a respiratory sensitizer.					
Skin sensitization	This product is not expected	This product is not expected to cause skin sensitization.				
Germ cell mutagenicity	No data available to indicate product or any components present at greater than 0.1% are mutagenic or genotoxic.					
Carcinogenicity	This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.					
OSHA Specifically Regulat Not listed.	ed Substances (29 CFR 1910. ⁻	1001-1050)				
Reproductive toxicity	This product is not expected	This product is not expected to cause reproductive or developmental effects.				
Specific target organ toxicity - single exposure	Not classified.					
Specific target organ toxicity - repeated exposure	Not classified.					
Aspiration hazard	Not an aspiration hazard.					
Chronic effects	Prolonged inhalation may be	harmful.				
12. Ecological informatio	n					
Ecotoxicity	The product is not classified as environmentally hazardous. However, this does not exclude the possibility that large or frequent spills can have a harmful or damaging effect on the environmer					
Persistence and degradability	No data is available on the d	egradability of this product.				
Bioaccumulative potential	No data available.					
Mobility in soil	Expected to be temporarily h	Expected to be temporarily highly mobile in soil.				
Other adverse effects	None known.					
13. Disposal consideratio	ons					
Disposal instructions	Collect and reclaim or dispos	e in sealed containers at licensed waste disposal site.				
Local disposal regulations	Dispose in accordance with all applicable regulations.					

Dispose of in accordance with local regulations. Empty containers or liners may retain some Waste from residues / unused product residues. This material and its container must be disposed of in a safe manner (see: products Disposal instructions). Empty containers should be taken to an approved waste handling site for recycling or disposal. Contaminated packaging Since emptied containers may retain product residue, follow label warnings even after container is emptied. 14. Transport information DOT Not regulated as dangerous goods. ΙΑΤΑ Not regulated as dangerous goods. IMDG Not regulated as dangerous goods. Not established. Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code 15. Regulatory information All components are listed on or exempt from the U.S. EPA TSCA Inventory List. **US federal regulations** This product is not known to be a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200. TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D) Not regulated. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050) Not listed. **CERCLA Hazardous Substance List (40 CFR 302.4)** Not listed. Superfund Amendments and Reauthorization Act of 1986 (SARA) Immediate Hazard - No Hazard categories Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No SARA 302 Extremely hazardous substance Not listed. SARA 311/312 Hazardous No chemical SARA 313 (TRI reporting) Not regulated. Other federal regulations Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List Not regulated. Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130) Not regulated. Safe Drinking Water Act Not regulated. (SDWA) **US state regulations** US. Massachusetts RTK - Substance List Not regulated. US. New Jersey Worker and Community Right-to-Know Act Colloidal activated carbon ≤2.5 µm (CAS 7440-44-0) US. Pennsylvania Worker and Community Right-to-Know Law Not listed. **US. Rhode Island RTK**

Not regulated.

US. California Proposition 65 Not Listed.

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	No
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	Yes
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	Yes
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	Yes

United States & Puerto Rico Toxic Substances Control Act (TSCA) Inventory

*A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s). A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

16. Other information, including date of preparation or last revision

Issue date	26-February-2015
Revision date	-
Version #	01
Further information	HMIS® is a registered trade and service mark of the American Coatings Association (ACA).
HMIS® ratings	Health: 0 Flammability: 0 Physical hazard: 0

NFPA ratings

Disclaimer

Regenesis cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.

SAFETY DATA SHEET

1. Identification

Product identifier	PlumeSTOP [®] Nutrients	
Other means of identification	None.	
Recommended use	Soil and Groundwater Remediation.	
Recommended restrictions	None known.	
Manufacturer/Importer/Supplier/	Distributor information	
Company Name	Regenesis	
Address	1011 Calle Sombra	
	San Clemente, CA 92673	
Telephone	949-366-8000	
E-mail	CustomerService@regenesis.com	
Emergency phone number	CHEMTREC® at 1-800-424-9300 (International)	
2. Hazard(s) identification		
Physical hazards	Not classified.	
Health hazards	Not classified.	
OSHA defined hazards	Not classified.	
Label elements		
Hazard symbol	None.	
Signal word	None.	
Hazard statement	The mixture does not meet the criteria for classification.	
Precautionary statement		
Prevention	Observe good industrial hygiene practices.	
Response	Wash hands after handling.	
Storage	Store away from incompatible materials.	
Disposal	Dispose of waste and residues in accordance with local authority	requirements.
Hazard(s) not otherwise classified (HNOC)	None known.	

Supplemental information None.

3. Composition/information on ingredients

Mixtures

The manufacturer lists no ingredients as hazardous according to OSHA 29 CFR 1910.1200.

4. First-aid measures

Inhalation	Move to fresh air. Call a physician if symptoms develop or persist.	
Skin contact	Wash off with soap and water. Get medical attention if irritation develops and persists.	
Eye contact	Do not rub eyes. Rinse with water. Get medical attention if irritation develops and persists.	
Ingestion	Rinse mouth. Get medical attention if symptoms occur.	
Most important symptoms/effects, acute and delayed	Dusts may irritate the respiratory tract, skin and eyes.	
Indication of immediate medical attention and special treatment needed	Treat symptomatically.	
General information	Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.)
PlumeSTOP [®] Nutrients		SD

5. Fire-fighting measures

0 0	
Suitable extinguishing media	Water fog. Foam. Dry chemical powder. Carbon dioxide (CO2). Apply extinguishing media carefully to avoid creating airborne dust.
Unsuitable extinguishing media	None known.
Specific hazards arising from the chemical	During fire, gases hazardous to health may be formed.
Special protective equipment and precautions for firefighters	Self-contained breathing apparatus and full protective clothing must be worn in case of fire.
Fire fighting equipment/instructions	Use water spray to cool unopened containers. Avoid dust formation.
Specific methods	Use standard firefighting procedures and consider the hazards of other involved materials.
General fire hazards	No unusual fire or explosion hazards noted.
6. Accidental release meas	sures
Personal precautions, protective equipment and emergency procedures	Keep unnecessary personnel away. Wear appropriate protective equipment and clothing during clean-up. Use a NIOSH/MSHA approved respirator if there is a risk of exposure to dust/fume at levels exceeding the exposure limits. For personal protection, see section 8 of the SDS.
Methods and materials for containment and cleaning up	Avoid the generation of dusts during clean-up. Collect dust using a vacuum cleaner equipped with HEPA filter. This product is miscible in water. Stop the flow of material, if this is without risk.
	Large Spille: Wet down with water and dike for later dispessel. Should be metarial into weater

Large Spills: Wet down with water and dike for later disposal. Shovel the material into waste container. Following product recovery, flush area with water.

Small Spills: Sweep up or vacuum up spillage and collect in suitable container for disposal. For waste disposal, see section 13 of the SDS. Avoid discharge into drains, water courses or onto the ground.

Store in original tightly closed container. Store in a well-ventilated place. Store away from

Environmental precautions

7. Handling and storage

Precautions for safe handling Minimize dust generation and accumulation. Provide appropriate exhaust ventilation at places where dust is formed. Practice good housekeeping.

incompatible materials (see Section 10 of the SDS).

Conditions for safe storage, including any incompatibilities

8. Exposure controls/personal protection

Occupational exposure limits

US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000)

Components	Туре	Value	Form
PlumeSTOP [®] Nutrients (as dust)	PEL	5 mg/m3	Respirable fraction.
		15 mg/m3	Total dust.
US. OSHA Table Z-3 (29 C	FR 1910.1000)		
Components	Туре	Value	Form
PlumeSTOP [®] Nutrients (as dust)	TWA	5 mg/m3	Respirable fraction.
		15 mg/m3	Total dust.
		50 mppcf	Total dust.
		15 mppcf	Respirable fraction.
US. ACGIH Threshold Lim	nit Values		
Components	Туре	Value	Form
PlumeSTOP [®] Nutrients (as dust)	TWA	3 mg/m3	Respirable particles.
		10 mg/m3	Inhalable particles.
ogical limit values	No biological exposure limits noted	for the ingredient(s).	
ropriate engineering trols	Ensure adequate ventilation, especi where possible, in enclosed or confi		haust is suggested for use

Individual protection measures, such as personal protective equipment

Eye/face protection	Wear safety glasses with side shields (or goggles). Unvented, tight fitting goggles should be worn in dusty areas.
Skin protection	
Hand protection	Wear appropriate chemical resistant gloves. Suitable gloves can be recommended by the glove supplier.
Skin protection	
Other	Wear suitable protective clothing.
Respiratory protection	In case of inadequate ventilation, use MSHA/NIOSH approved dust respirator.
Thermal hazards	Wear appropriate thermal protective clothing, when necessary.
General hygiene considerations	Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants.

9. Physical and chemical properties

or ringerear and enemiear	
Appearance	
Physical state	Solid.
Form	Powder.
Color	White.
Odor	Odorless.
Odor threshold	Not available.
pH	Not available.
Melting point/freezing point	Not available.
Initial boiling point and boiling range	Not available.
Flash point	Not available.
Evaporation rate	Not available.
Flammability (solid, gas)	The product is non-combustible.
Upper/lower flammability or exp	losive limits
Flammability limit - lower (%)	Not available.
Flammability limit - upper (%)	Not available.
Explosive limit - lower (%)	Not available.
Explosive limit - upper (%)	Not available.
Vapor pressure	Not available.
Vapor density	Not available.
Relative density	Not available.
Solubility(ies)	
Solubility (water)	Completely soluble.
Partition coefficient (n-octanol/water)	Not available.
Auto-ignition temperature	Not available.
Decomposition temperature	Not available.
Viscosity	Not available.
Other information	
Explosive properties	Not explosive.
Oxidizing properties	Not oxidizing.
10. Stability and reactivity	

ReactivityThe product is stable and non-reactive under normal conditions of use, storage and transport.Chemical stabilityMaterial is stable under normal conditions.

Possibility of hazardous reactions	No dangerous reaction known under conditions of normal use. Ammonia fumes may be released upon heating.	
Conditions to avoid	Contact with incompatible materials. Excessive heat.	
Incompatible materials	Strong oxidizing agents. Bases.	
Hazardous decomposition products	Ammonia fumes may be released upon heating.	
11. Toxicological informat	tion	
Information on likely routes of e	exposure	
Inhalation	Dust may irritate respiratory system.	
Skin contact	Dust or powder may irritate the skin.	
Eye contact	Dust may irritate the eyes.	
Ingestion	Expected to be a low ingestion hazard.	
Symptoms related to the physical, chemical and toxicological characteristics	Dusts may irritate the respiratory tract, skin and eyes.	
Information on toxicological effe	ects	
Acute toxicity	Not expected to be acutely toxic.	
Skin corrosion/irritation	Prolonged skin contact may cause temporary irritation.	
Serious eye damage/eye irritation	Direct contact with eyes may cause temporary irritation.	
Respiratory or skin sensitization		
Respiratory sensitization	Not a respiratory sensitizer.	
Skin sensitization	This product is not expected to cause skin sensitization.	
Germ cell mutagenicity	No data available to indicate product or any components present at greater than 0.1% are mutagenic or genotoxic.	
Carcinogenicity	This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.	
	Evaluation of Carcinogenicity	
Not listed. NTP Report on Carcinogens		
Not listed.		
	d Substances (29 CFR 1910.1001-1050)	
Not regulated.	This product is not supported to source remarkative and suclearly such that	
Reproductive toxicity	This product is not expected to cause reproductive or developmental effects.	
Specific target organ toxicity - single exposure	Not classified.	
Specific target organ toxicity - repeated exposure	Not classified.	
Aspiration hazard	Not an aspiration hazard.	
12. Ecological information		
Ecotoxicity	The product is not classified as environmentally hazardous. However, this does not exclude the possibility that large or frequent spills can have a harmful or damaging effect on the environment.	
Persistence and degradability	No data is available on the degradability of this product.	
Bioaccumulative potential	No data available.	
Mobility in soil	This product is completely water soluble and will disperse in soil.	
Other adverse effects	No other adverse environmental effects (e.g. ozone depletion, photochemical ozone creation potential, endocrine disruption, global warming potential) are expected from this component.	
13. Disposal consideratior	IS	
Disposal instructions	Collect and reclaim or dispose in sealed containers at licensed waste disposal site.	
Local disposal regulations	Dispose in accordance with all applicable regulations.	
Hazardous waste code	The waste code should be assigned in discussion between the user, the producer and the waste	
	disposal company.	

Dispose of in accordance with local regulations. Empty containers or liners may retain some Waste from residues / unused product residues. This material and its container must be disposed of in a safe manner (see: products Disposal instructions). Since emptied containers may retain product residue, follow label warnings even after container is Contaminated packaging emptied. Empty containers should be taken to an approved waste handling site for recycling or disposal. 14. Transport information DOT Not regulated as dangerous goods. ΙΑΤΑ Not regulated as dangerous goods. IMDG Not regulated as dangerous goods. Transport in bulk according to Not applicable. Annex II of MARPOL 73/78 and the IBC Code 15. Regulatory information This product is not known to be a "Hazardous Chemical" as defined by the OSHA Hazard **US federal regulations** Communication Standard, 29 CFR 1910,1200. TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D) Not regulated. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050) Not regulated. CERCLA Hazardous Substance List (40 CFR 302.4) Not listed. Superfund Amendments and Reauthorization Act of 1986 (SARA) Hazard categories Immediate Hazard - No Delaved Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No SARA 302 Extremely hazardous substance Not listed. SARA 311/312 Hazardous No chemical SARA 313 (TRI reporting) **Chemical name CAS** number % by wt. 7783-20-2 40-50 Ammonium sulfate Other federal regulations Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List Not regulated. Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130) Not regulated. Safe Drinking Water Act Not regulated. (SDWA) **US state regulations US. Massachusetts RTK - Substance List** Ammonium sulfate (CAS 7783-20-2) US. New Jersey Worker and Community Right-to-Know Act Not listed. US. Pennsylvania Worker and Community Right-to-Know Law Ammonium sulfate (CAS 7783-20-2) **US. Rhode Island RTK**

Not regulated.

US. California Proposition 65

California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65): This material is not known to contain any chemicals currently listed as carcinogens or reproductive toxins.

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	No
Canada	Domestic Substances List (DSL)	No
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	No
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	No
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (ECL)	No
New Zealand	New Zealand Inventory	No
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	No
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	No

*A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s).

A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

16. Other information, including date of preparation or last revision

HMIS® ratings	Health: 1 Flammability: 0 Physical hazard: 0
Version #	01
Revision date	-
Issue date	07-January-2016

NFPA ratings

Disclaimer

Regenesis cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.

SAFETY DATA SHEET

1. Identification

Product identifier	PlumeSTOP [®] S
Other means of identification	None.
Recommended use	Soil and Groundwater Remediation.
Recommended restrictions	None known.
Manufacturer/Importer/Supplier/	Distributor information
Company Name	Regenesis
Address	1011 Calle Sombra
Address	1011 Calle Sombra San Clemente, CA 92673
Address Telephone	
	San Clemente, CA 92673
Telephone	San Clemente, CA 92673 949-366-8000

2. Hazard(s) identification

Physical hazards	Not classified.	
Health hazards	Not classified.	
OSHA defined hazards	Not classified.	
Label elements		
Hazard symbol	None.	
Signal word	None.	
Hazard statement	The mixture does not meet the criteria for classification.	
Precautionary statement		
Prevention	Observe good industrial hygiene practices.	
Response	Wash hands after handling.	
Storage	Store away from incompatible materials.	
Disposal	Dispose of waste and residues in accordance with local authority requi	irements.
Hazard(s) not otherwise classified (HNOC)	None known.	

3. Composition/information on ingredients

Mixtures			
Chemical name		CAS number	%
Water		7732-18-5	>75
Colloidal activated carbon ≤2 µm	.5	7440-44-0	<25
Proprietary additives			≤2
Composition comments	All concentrations are in percent by weigh	nt unless otherwise indicated.	
4. First-aid measures			
Inhalation	Move to fresh air. Call a physician if sympt	oms develop or persist.	
Skin contact	Wash off with soap and water. Get medical attention if irritation develops and persists.		
Eye contact	Rinse with water. Get medical attention if irritation develops and persists.		
Ingestion	Rinse mouth. Get medical attention if symptoms occur.		
Most important symptoms/effects, acute and delayed	Direct contact with eyes may cause tempo	orary irritation.	

Indication of immediate	Treat symptomatically.
medical attention and special treatment needed	
General information	If you feel unwell, seek medical advice (show the label where possible). Show this safety data sheet to the doctor in attendance.
5. Fire-fighting measures	
Suitable extinguishing media	Carbon dioxide, alcohol-resistant foam, dry chemical, water spray, or water fog.
Unsuitable extinguishing media	None known.
Specific hazards arising from the chemical	During fire, gases hazardous to health may be formed. Combustion products may include: carbon monoxide, carbon dioxide, sodium oxides, metal oxides.
Special protective equipment and precautions for firefighters	Use protective equipment appropriate for surrounding materials.
Fire fighting equipment/instructions	Move containers from fire area if you can do so without risk.
Specific methods	Use standard firefighting procedures and consider the hazards of other involved materials. Use water spray to keep fire-exposed containers cool.
General fire hazards	This material will not burn until the water has evaporated. Residue can burn. When dry may form combustible dust concentrations in air.
6. Accidental release mea	sures
Personal precautions, protective equipment and emergency procedures	Keep unnecessary personnel away. Avoid contact with spilled material. For personal protection, see section 8 of the SDS.
Methods and materials for	This product is miscible in water.
containment and cleaning up	
	Large Spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water.
	possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth
	possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water. Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to
Environmental precautions	possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water. Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.
	 possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water. Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination. Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS.
Environmental precautions	 possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water. Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination. Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS.

8. Exposure controls/personal protection

Occupational exposure limits

US. OSHA Table Z-3 (29 CFR 1910.1000)

Components	Туре	Value	Form
Colloidal activated carbon ≤2.5 µm (CAS 7440-44-0)	TWA	5 mg/m3	Respirable fraction.
-2.0 pm (0/10 / 440-44-0)		15 mg/m3	Total dust.
US. NIOSH: Pocket Guide t	o Chemical Hazards		
Components	Туре	Value	Form
Colloidal activated carbon ≤2.5 µm (CAS 7440-44-0)	TWA	2.5 mg/m3	Respirable.
ological limit values	No biological exposure limits noted for the ingredient(s).		
ppropriate engineering ntrols	Good general ventilation (typically 10 air changes per hour) should be used. Ventilation rates should be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level.		

Individual protection measures, such as personal protective equipment

Eye/face protection	Wear approved chemical safety goggles.	
Skin protection		
Hand protection	Rubber, neoprene or PVC gloves are recommended. Wash hands after handling.	
Other	Avoid contact with the skin. Wear suitable protective clothing.	
Respiratory protection	Not normally needed. In case of insufficient ventilation, wear suitable respiratory equipment. If engineering controls do not maintain airborne concentrations below recommended exposure limits (where applicable) or to an acceptable level (in countries where exposure limits have not been established), an approved respirator must be worn.	
Thermal hazards	Wear appropriate thermal protective clothing, when necessary.	
General hygiene considerations	Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants.	

9. Physical and chemical properties

Appearance	
Physical state	Liquid.
Form	Aqueous suspension.
Color	Black.
Odor	Odorless.
Odor threshold	Not available.
рН	8 - 10
Melting point/freezing point	Not available.
Initial boiling point and boiling range	Not available.
Flash point	Not flammable.
Evaporation rate	Not available.
Flammability (solid, gas)	Not applicable.
Upper/lower flammability or exp	losive limits
Flammability limit - lower (%)	Not available.
Flammability limit - upper (%)	Not available.
Explosive limit - lower (%)	Not available.
Explosive limit - upper (%)	Not available.
Vapor pressure	Not available.
Vapor density	Not available.
Relative density	1 - 1.2
Solubility(ies)	
Solubility (water)	Miscible
Partition coefficient (n-octanol/water)	Not available.
Auto-ignition temperature	Not available.
Decomposition temperature	Not available.
Viscosity	Not available.
10. Stability and reactivity	
Reactivity	The product is stable and non-reactive under normal conditions of use, storage and transport.
Chemical stability	Material is stable under normal conditions.
Possibility of hazardous reactions	No dangerous reaction known under conditions of normal use.
Conditions to avoid	Contact with incompatible materials. Keep from freezing.
Incompatible materials	Strong oxidizing agents. Water reactive materials.

11. Toxicological information

Information on likely routes of exposure

Inhalation	Prolonged inhalation may be harmful.	
Skin contact	Prolonged or repeated skin contact may result in minor irritation.	
Eye contact	Direct contact with eyes may cause temporary irritation.	
Ingestion	Expected to be a low ingestion hazard.	
Symptoms related to the physical, chemical and toxicological characteristics	Direct contact with eyes may cause temporary irritation.	

Information on toxicological effects

Acute toxicity

Not expected to be acutely toxic.

Components	Species	Test Results
Colloidal activated carbon ≤2.5 µ	m (CAS 7440-44-0)	
Acute		
Inhalation		
LC50	Rat	> 8500 mg/m³, air
Oral		
LD50	Rat	> 2000 mg/kg, (Female)
Skin corrosion/irritation	Prolonged skin contact may cause temporary irritation.	
Serious eye damage/eye irritation	Direct contact with eyes may cause temporary irritation.	
Respiratory or skin sensitizatio	on	
Respiratory sensitization	Not a respiratory sensitizer.	
Skin sensitization	This product is not expected to cause skin sensitization.	
Germ cell mutagenicity	No data available to indicate product or any components present at greater than 0.1% are mutagenic or genotoxic.	
Carcinogenicity	This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.	
OSHA Specifically Regulat Not listed.	ed Substances (29 CFR 1910.1	001-1050)
Reproductive toxicity	This product is not expected to cause reproductive or developmental effects.	
Specific target organ toxicity - single exposure	Not classified.	
Specific target organ toxicity - repeated exposure	Not classified.	
Aspiration hazard	Not an aspiration hazard.	
Chronic effects	Prolonged inhalation may be harmful.	
12. Ecological information	n	
Ecotoxicity	The product is not classified as environmentally hazardous. However, this does not exclude the possibility that large or frequent spills can have a harmful or damaging effect on the environment.	
Persistence and degradability	No data is available on the degradability of this product.	
Bioaccumulative potential	No data available.	
Mobility in soil	Expected to be temporarily highly mobile in soil.	
Other adverse effects	None known.	
13. Disposal consideratio	ons	
Disposal instructions	Collect and reclaim or dispose	in sealed containers at licensed waste disposal site.
Local disposal regulations	Dispose in accordance with all applicable regulations	

Dispose of in accordance with local regulations. Empty containers or liners may retain some Waste from residues / unused product residues. This material and its container must be disposed of in a safe manner (see: products Disposal instructions). Empty containers should be taken to an approved waste handling site for recycling or disposal. **Contaminated packaging** Since emptied containers may retain product residue, follow label warnings even after container is emptied. 14. Transport information DOT Not regulated as dangerous goods. ΙΑΤΑ Not regulated as dangerous goods. IMDG Not regulated as dangerous goods. Transport in bulk according to Not established. Annex II of MARPOL 73/78 and the IBC Code 15. Regulatory information All components are listed on or exempt from the U.S. EPA TSCA Inventory List. **US federal regulations** This product is not known to be a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200. TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D) Not regulated. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050) Not listed. CERCLA Hazardous Substance List (40 CFR 302.4) Not listed. Superfund Amendments and Reauthorization Act of 1986 (SARA) Hazard categories Immediate Hazard - No Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No SARA 302 Extremely hazardous substance Not listed. SARA 311/312 Hazardous No chemical SARA 313 (TRI reporting) Not regulated. Other federal regulations Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List Not regulated. Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130) Not regulated. Not regulated. Safe Drinking Water Act (SDWA) US state regulations US. Massachusetts RTK - Substance List Not regulated. US. New Jersey Worker and Community Right-to-Know Act Colloidal activated carbon ≤2.5 µm (CAS 7440-44-0) US. Pennsylvania Worker and Community Right-to-Know Law Not listed. **US. Rhode Island RTK** Not regulated.

US. California Proposition 65 Not Listed.

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	No
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	Yes
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	Yes
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	Yes

*A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s).

A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

16. Other information, including date of preparation or last revision

Issue date	26-February-2015		
Revision date	-		
Version #	01		
Further information	HMIS® is a registered trade and service mark of the American Coatings Association (ACA).		
HMIS® ratings	Health: 0 Flammability: 0 Physical hazard: 0		

NFPA ratings

Disclaimer

Regenesis cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.

SAFETY DATA SHEET

1. Identification

Product identifier	PlumeSTOP [®] Nutrients				
Other means of identification	None.				
Recommended use	Soil and Groundwater Remediation.				
Recommended restrictions	None known.				
Manufacturer/Importer/Supplier/	/anufacturer/Importer/Supplier/Distributor information				
Company Name	Regenesis				
Address	1011 Calle Sombra				
	San Clemente, CA 92673				
Telephone	949-366-8000				
E-mail	CustomerService@regenesis.com				
Emergency phone number	CHEMTREC® at 1-800-424-9300 (International)				
2. Hazard(s) identification					
Physical hazards	Not classified.				
Health hazards	Not classified.				
OSHA defined hazards	Not classified.				
Label elements					
Hazard symbol	None.				
Signal word	None.				
Hazard statement	The mixture does not meet the criteria for classification.				
Precautionary statement	etalisti e such trifuere sublime				
Prevention	Observe good industrial hygiene practices.				
Response	Wash hands after handling.				
Storage	Store away from incompatible materials.				
Disposal	Dispose of waste and residues in accordance with local authority requirements.				

classified (HNOC) Supplemental information

Hazard(s) not otherwise

None.

None known.

3. Composition/information on ingredients

Mixtures

The manufacturer lists no ingredients as hazardous according to OSHA 29 CFR 1910.1200.

4. First-aid measures

Inhalation	Move to fresh air. Call a physician if symptoms develop or persist.		
Skin contact	Wash off with soap and water. Get medical attention if irritation develops and persists.		
Eye contact	Do not rub eyes. Rinse with water. Get medical attention if irritation develops and persists.		
Ingestion	Rinse mouth. Get medical attention if symptoms occur.		
Most important symptoms/effects, acute and delayed	Dusts may irritate the respiratory tract, skin and eyes.		
Indication of immediate medical attention and special treatment needed	Treat symptomatically.		
General information	Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.		

PlumeSTOP[®] Nutrients

5. Fire-fighting measures

Suitable extinguishing media	Water fog. Foam. Dry chemical powder. Carbon dioxide (CO2). Apply extinguishing media carefully to avoid creating airborne dust.	
Unsuitable extinguishing media	None known.	
Specific hazards arising from the chemical	During fire, gases hazardous to health may be formed.	
Special protective equipment and precautions for firefighters	Self-contained breathing apparatus and full protective clothing must be worn in case of fire.	
Fire fighting equipment/instructions	Use water spray to cool unopened containers. Avoid dust formation.	
Specific methods	Use standard firefighting procedures and consider the hazards of other involved materials.	
General fire hazards	No unusual fire or explosion hazards noted.	
6. Accidental release measures		

Personal precautions, protective equipment and emergency procedures	Keep unnecessary personnel away. Wear appropriate protective equipment and clothing during clean-up. Use a NIOSH/MSHA approved respirator if there is a risk of exposure to dust/fume at levels exceeding the exposure limits. For personal protection, see section 8 of the SDS.
Methods and materials for containment and cleaning up	Avoid the generation of dusts during clean-up. Collect dust using a vacuum cleaner equipped with HEPA filter. This product is miscible in water. Stop the flow of material, if this is without risk.
	Large Spills: Wet down with water and dike for later disposal. Shovel the material into waste container. Following product recovery, flush area with water.
	Small Spills: Sweep up or vacuum up spillage and collect in suitable container for disposal. For waste disposal, see section 13 of the SDS.
Environmental precautions	Avoid discharge into drains, water courses or onto the ground.
7. Handling and storage	
Precautions for safe handling	Minimize dust generation and accumulation. Provide appropriate exhaust ventilation at places

Conditions for safe storage, including any incompatibilities Minimize dust generation and accumulation. Provide appropriate exhaust ventilation at place where dust is formed. Practice good housekeeping. Store in original tightly closed container. Store in a well-ventilated place. Store away from incompatible materials (see Section 10 of the SDS).

including any incompatibilities incompat

8. Exposure controls/personal protection

Occupational exposure limits

US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000)

Components	Туре	Value	Form
PlumeSTOP [®] Nutrients (as dust)	PEL	5 mg/m3	Respirable fraction.
		15 mg/m3	Total dust.
US. OSHA Table Z-3 (29 C	FR 1910.1000)		
Components	Туре	Value	Form
PlumeSTOP [®] Nutrients (as dust)	TWA	5 mg/m3	Respirable fraction.
		15 mg/m3	Total dust.
		50 mppcf	Total dust.
,		15 mppcf	Respirable fraction.
US. ACGIH Threshold Lim	it Values		
Components	Туре	Value	Form
PlumeSTOP [®] Nutrients (as dust)	TWA	3 mg/m3	Respirable particles.
		10 mg/m3	Inhalable particles.
ogical limit values	No biological exposure limits noted t	for the ingredient(s).	
ropriate engineering trols	Ensure adequate ventilation, especi where possible, in enclosed or confi		haust is suggested for use

Individual protection measures, such as personal protective equipment

Eye/face protection	Wear safety glasses with side shields (or goggles). Unvented, tight fitting goggles should be worn in dusty areas.		
Skin protection			
Hand protection	Wear appropriate chemical resistant gloves. Suitable gloves can be recommended by the glove supplier.		
Skin protection			
Other	Wear suitable protective clothing.		
Respiratory protection	In case of inadequate ventilation, use MSHA/NIOSH approved dust respirator.		
Thermal hazards	Wear appropriate thermal protective clothing, when necessary.		
General hygiene considerations	Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants.		

9. Physical and chemical properties

, ,				
Appearance				
Physical state	Solid.			
Form	Powder.			
Color	White.			
Odor	Odorless.			
Odor threshold	Not available.			
рH	Not available.			
Melting point/freezing point	Not available.			
Initial boiling point and boiling range	Not available.			
Flash point	Not available.			
Evaporation rate	Not available.			
Flammability (solid, gas)	The product is non-combustible.			
Upper/lower flammability or explo	Upper/lower flammability or explosive limits			
Flammability limit - lower (%)	Not available.			
Flammability limit - upper (%)	Not available.			
Explosive limit - lower (%)	Not available.			
Explosive limit - upper (%)	Not available.			
Vapor pressure	Not available.			
Vapor density	Not available.			
Relative density	Not available.			
Solubility(ies)				
Solubility (water)	Completely soluble.			
Partition coefficient (n-octanol/water)	Not available.			
Auto-ignition temperature	Not available.			
Decomposition temperature	Not available.			
Viscosity	Not available.			
Other information				
Explosive properties	Not explosive.			
Oxidizing properties	Not oxidizing.			
10. Stability and reactivity				
Reactivity	The product is stable and non-reactive under normal conditions of use, storage and tr			

Reactivity Chemical stability The product is stable and non-reactive under normal conditions of use, storage and transport. Material is stable under normal conditions.

Possibility of hazardous reactions	No dangerous reaction known under conditions of normal use. Ammonia fumes may be released upon heating.	
Conditions to avoid	Contact with incompatible materials. Excessive heat.	
Incompatible materials	Strong oxidizing agents. Bases.	
Hazardous decomposition products	Ammonia fumes may be released upon heating.	
11. Toxicological information		
Information on likely routes of e	exposure	
Inhalation	Dust may irritate respiratory system.	
Skin contact	Dust or powder may irritate the skin.	
Eye contact	Dust may irritate the eyes.	
Ingestion	Expected to be a low ingestion hazard.	
Symptoms related to the physical, chemical and toxicological characteristics	Dusts may irritate the respiratory tract, skin and eyes.	
Information on toxicological effe	ects	
Acute toxicity	Not expected to be acutely toxic.	
Skin corrosion/irritation	Prolonged skin contact may cause temporary irritation.	
Serious eye damage/eye irritation	Direct contact with eyes may cause temporary irritation.	
Respiratory or skin sensitizatior	1	
Respiratory sensitization	Not a respiratory sensitizer.	
Skin sensitization	This product is not expected to cause skin sensitization.	
Germ cell mutagenicity	No data available to indicate product or any components present at greater than 0.1% are mutagenic or genotoxic.	
Carcinogenicity	This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.	
IARC Monographs. Overall I Not listed.	Evaluation of Carcinogenicity	
NTP Report on Carcinogens		
Not listed. OSHA Specifically Regulate	d Substances (29 CFR 1910.1001-1050)	
Not regulated.		
Reproductive toxicity	This product is not expected to cause reproductive or developmental effects.	
Specific target organ toxicity - single exposure	Not classified.	
Specific target organ toxicity - repeated exposure	Not classified.	
Aspiration hazard	Not an aspiration hazard.	
12. Ecological information		
Ecotoxicity	The product is not classified as environmentally hazardous. However, this does not exclude the possibility that large or frequent spills can have a harmful or damaging effect on the environment.	
Persistence and degradability	No data is available on the degradability of this product.	
Bioaccumulative potential	No data available.	
Mobility in soil	This product is completely water soluble and will disperse in soil.	
Other adverse effects	No other adverse environmental effects (e.g. ozone depletion, photochemical ozone creation potential, endocrine disruption, global warming potential) are expected from this component.	
13. Disposal consideration	าร	
Disposal instructions	Collect and reclaim or dispose in sealed containers at licensed waste disposal site.	
Local disposal regulations	Dispose in accordance with all applicable regulations.	
Hazardous waste code	The waste code should be assigned in discussion between the user, the producer and the waste disposal company.	

Waste from residues / unused Dispose of in accordance with local regulations. Empty containers or liners may retain some products product residues. This material and its container must be disposed of in a safe manner (see: Disposal instructions). Contaminated packaging Since emptied containers may retain product residue, follow label warnings even after container is emptied. Empty containers should be taken to an approved waste handling site for recycling or disposal. 14. Transport information DOT Not regulated as dangerous goods. IATA Not regulated as dangerous goods. IMDG Not regulated as dangerous goods. Transport in bulk according to Not applicable. Annex II of MARPOL 73/78 and the IBC Code 15. Regulatory information **US federal regulations** This product is not known to be a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200. TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D) Not regulated. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050) Not regulated. CERCLA Hazardous Substance List (40 CFR 302.4) Not listed. Superfund Amendments and Reauthorization Act of 1986 (SARA) Immediate Hazard - No **Hazard categories** Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No SARA 302 Extremely hazardous substance Not listed. SARA 311/312 Hazardous No chemical SARA 313 (TRI reporting) **Chemical name** CAS number % by wt. 7783-20-2 40-50 Ammonium sulfate Other federal regulations Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List Not regulated. Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130) Not regulated. Safe Drinking Water Act Not regulated. (SDWA) **US state regulations** US. Massachusetts RTK - Substance List Ammonium sulfate (CAS 7783-20-2) US. New Jersey Worker and Community Right-to-Know Act Not listed. US. Pennsylvania Worker and Community Right-to-Know Law Ammonium sulfate (CAS 7783-20-2) **US. Rhode Island RTK** Not regulated.

US. California Proposition 65

California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65): This material is not known to contain any chemicals currently listed as carcinogens or reproductive toxins.

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	No
Canada	Domestic Substances List (DSL)	No
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	No
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	No
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (ECL)	No
New Zealand	New Zealand Inventory	No
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	No
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	No

*A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s).

A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

16. Other information, including date of preparation or last revision

. .

Issue date	07-January-2016
Revision date	-
Version #	01
HMIS® ratings	Health: 1 Flammability: 0 Physical hazard: 0
NFPA ratings	

100

Disclaimer

Regenesis cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.

July 23, 2019 TO: State of Alaska DOT & PF Attn: Ashley Jaramillo 6450 Airport Way Suite 1 Fairbanks, AK 99709 ashley.jaramillo@alaska.gov

CC: Shannon & Wilson, Inc. Attn: Adam Wyborny 2355 Hill Road Fairbanks, AK 99709 apw@shanwil.com

RE: (See attached Table 1 for referenced case(s)) **FINAL DETERMINATION**

 Table 1 - Letter Referenced Case(s)
 Image: Case(s)

ASN	Prior ASN	Location	Latitude (NAD83)	Longitude (NAD83)	AGL (Feet)	AMSL (Feet)
2019-AAL-113-NRA		FAIRBANKS,AK	64-48-06.85N	147-53-48.46W	35	474

Description: The drill rig to install a monitoring well.

We do not object with conditions to the construction described in this proposal provided:

You comply with the requirements set forth in FAA Advisory Circular 150/5370-2, "Operational Safety on Airports During Construction."

This determination does not constitute FAA approval or disapproval of the physical development involved in the proposal. It is a determination with respect to the safe and efficient use of navigable airspace by aircraft and with respect to the safety of persons and property on the ground.

In making this determination, the FAA has considered matters such as the effects the proposal would have on existing or planned traffic patterns of neighboring airports, the effects it would have on the existing airspace structure and projected programs of the FAA, the effects it would have on the safety of persons and property on the ground, and the effects that existing or proposed manmade objects (on file with the FAA), and known natural objects within the affected area would have on the airport proposal.

This determination expires on January 23, 2021 unless:

(a) extended, revised or terminated by the issuing office.

(b) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for the completion of construction, or the date the FCC denies the application.

NOTE: Request for extension of the effective period of this determination must be obtained at least 15 days prior to expiration date specified in this letter.

If you have any questions concerning this determination contact Patrick Zettler (907) 271-5446 Patrick.Zettler@faa.gov. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2019-AAL-113-NRA.

Patrick Zettler Specialist Signature Control No: 405917874-412140903

Department of Environmental Conservation

DIVISION OF SPILL PREVENTION AND RESPONSE Contaminated Sites Program

> 610 University Avenue Fairbanks, AK 99709-3643 Phone: 907-451-2143 Fax: 907-451-2155 www.dec.alaska.gov

> > File: 100.38.277

May 29, 2019

Angela Spear Alaska Department of Transportation and Public Facilities Fairbanks International Airport 6450 Airport Way, Suite 1 Fairbanks, AK, 99709

Re: FIA – Sitewide PFAS; PlumeStop Pilot study

Dear Ms. Spear,

The Alaska Department of Environmental Conservation (DEC) has reviewed the PlumeStop® Pilot Study overview plan, submitted by Shannon & Wilson, Inc. on March 28, 2019. The DEC provided comments to the original draft on May 7, 2019, and received a revised plan on May 17, 2019. The revised plan adequately addressed DEC comments, and the plan is approved.

Please keep the DEC project manager informed regarding the field schedule for PlumeStop injections.

If you have any questions or concerns please feel free to contact me at (907)451-2153 or via email at <u>Robert.burgess@alaska.gov</u>.

Sincerely,

Robert Burgess Environmental Program Specialist III DEC Contaminated Sites Program

cc (via email): Ashley Jaramillo, FAI Marcy Nadel, Shannon & Wilson Adam Wyborny, Shannon & Wilson Gretchen Caudill, DEC Janice Wiegers, DEC

Important Information About Your Environmental Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent

such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland